Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 52(8): 4736-43, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23527879

RESUMO

Two different synthetic methodologies of silicon dihalide bridged biradicals of the general formula (L(n)•)2SiX2 (n = 1, 2) have been developed. First, the metathesis reaction between NHC:SiX2 and L(n): (L(n): = cyclic akyl(amino) carbene in a 1:3 molar ratio leads to the products 2 (n = 1, X = Cl), 4 (n = 2, X = Cl), 6 (n = 1, X = Br), and 7 (n = 2, X = Br). These reactions also produce coupled NHCs (3, 5) under C-C bond formation. The formation of the coupled NHCs (L(m) = cyclic alkyl(amino) carbene substituted N-heterocyclic carbene; m = 3, n = 1 (3) and m = 4, n =2 (5)) is faster during the metathesis reaction between NHC:SiBr2 and L(n): when compared with that of NHC:SiCl2. Second, the reaction of L(1):SiCl4 (8) (L(1): =:C(CH2)(CMe2)2N-2,6-iPr2C6H3) with a non-nucleophilic base LiN(iPr)2 in a 1:1 molar ratio shows an unprecedented methodology for the synthesis of the biradical (L(1)•)2SiCl2 (2). The blue blocks of silicon dichloride bridged biradicals (2, 4) are stable for more than six months under an inert atmosphere and in air for one week. Compounds 2 and 4 melt in the temperature range of 185 to 195 °C. The dibromide (6, 7) analogue is more prone to decomposition in the solution but comparatively more stable in the solid state than in the solution. Decomposition of the products has been observed in the UV-vis spectra. Moreover, compounds 2 and 4 were further converted to stable singlet biradicaloid dicarbene-coordinated (L(n):)2Si(0) (n = 1 (9), 2 (10)) under KC8 reduction. Compounds 2 and 4 were also reduced to dehalogenated products 9 and 10, respectively when treated with RLi (R = Ph, Me, tBu). Cyclic voltametry measurements show that 10 can irreversibly undergo both one electron oxidation and reduction.


Assuntos
Metano/análogos & derivados , Compostos de Silício/síntese química , Silício/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Halogenação , Metano/síntese química , Metano/química , Modelos Moleculares , Compostos de Silício/química , Espectrofotometria Ultravioleta
2.
Chem Sci ; 9(14): 3531-3537, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29780484

RESUMO

Immobilization of the 2nd generation Hoveyda-Grubbs catalyst HG-II onto well-ordered 2D hexagonal (SBA15) and 3D fibrous (KCC-1) mesostructured silica, which contained tetra-coordinated Al, has been investigated through the Surface Organometallic Chemistry (SOMC) methodology. The main interest of this study lies in the peculiarity of the silica supports, which display a well-defined tetrahedral aluminum hydride site displaying a strong Lewis acid character, [([triple bond, length half m-dash]Si-O-Si[triple bond, length half m-dash])([triple bond, length half m-dash]Si-O-)2Al-H]. The resulting supported Hoveyda-Grubbs catalysts have been fully characterized by advanced solid state characterization techniques (FT-IR, 1H and 13C solid state NMR, DNP-SENS, EF-TEM…). Together with DFT calculations, the immobilization of HG-II does not occur through the formation of a covalent bond between the complex and the Al-modified mesoporous silica as expected, but through an Al···Cl-[Ru]-coordination. It is not surprising that in functionalized olefin metathesis of diethyldiallyl malonate, DEDAM (liquid phase), leaching of the catalyst is observed which is not the case in non-functionalized olefin metathesis of propene (gas phase). Besides, the results obtained in propene metathesis with HG-II immobilized either on SBA15 (d pore = 6 nm) or KCC-1 (d pore = 4 or 8 nm) highlight the importance of the accessibility of the catalytic site. Therefore, we demonstrate that KCC-1 is a promising and suitable 3D mesoporous support to overcome the diffusion of reactants into the porous network of heterogeneous catalysts.

3.
Dalton Trans ; 42(36): 12940-6, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23770833

RESUMO

Oxidation reactions of stable chalcogenamides with iodine are intriguing due to their broad application in various organic syntheses. In the present study we report on the utilization of N-heterocyclic carbene and cyclic-alkyl-amino carbenes L(1-3): (L(1): = :C[N(2,6-iPr2-C6H3)CH]2, L(2): = :C(CH2)(CMe2)(C6H10)N-2,6-iPr2-C6H3, L(3): = :C(CH2)(CMe2)2N-2,6-iPr2-C6H3) for the syntheses of chalcogenamides L(1-3)=E (E = S, Se, Te) 1-4 and zwitterionic adducts L(1-3)=E-I-I 5-8. The synthesis of compounds 1-4 involved the addition reaction of ligand L(1-3): and elemental chalcogen. Treatment of 1-4 with iodine resulted in the formation of adducts 5-8. Compounds 5-8 are well characterized with various spectroscopic methods and single-crystal X-ray structural analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA