RESUMO
This paper focuses on the characterization of radio propagation, and data communication in a marine environment. More specifically, we consider signal propagation when three different sub-gigahertz industrial, scientific, and medical (ISM) bands, i.e., 169 MHz, 434 MHz, and 868 MHz, are used. The main focus of the paper is to evaluate the path loss (PL), i.e., the power loss that a propagation radio wave would experience when communication occurs between a sail boat and a buoy. We describe the measurement results obtained performing three different radio power measurement campaigns, at the three different aforementioned ISM sub-gigahertz bands. We also want to correlate the radio propagation quality with the weather conditions present in the measurement areas. The obtained results show that higher distances are achieved by transmitting at lower frequencies, i.e., 169 MHz, and, on average, the propagation is directly dependent from the dew point index.
RESUMO
We propose a novel technique to estimate the total volume of unknown insulating inclusions in an electrically conducting body from voltage measurements. Unlike conventional Electrical Impedance Tomography (EIT) systems that usually exhibit low spatial resolution and accuracy, the proposed device is composed of a pair of driving electrodes which, supplied with a known sinusoidal voltage, create a current density field inside a region of interest. The electrodes are designed to generate a current density field in the region of interest that is uniform, to a good approximation, when the inclusions are not present. A set of electrodes with a polygonal geometry is used for four-wires resistance measurements. The proposed technique has been tested designing a low cost prototype, where all electrodes are on the bottom of the conducting body, showing good performances. Such a device may be used to monitor the volume of biological cells inside cell culture dishes or the volume of blood clots in micro-channels in lab-on-a-chip biosensors.
RESUMO
The aim of this study is to define the process parameters to build components for industrial applications in A357 alloy by Laser Powder Bed Fusion (LPBF) and to evaluate the effects of post-processing heat treatments on the microstructure and mechanical properties in order to obtain the highest hardness and strength. First, process parameters values were defined to obtain full dense components with highest productivity. Then samples were built for microstructural, hardness, and tensile strength investigation in different conditions: as-built, after a stress-relieving treatment, and after a T6 precipitation hardening treatment. For this latest treatment, different time and temperatures for solution and ageing were investigated to find the best in terms of final hardness achievable. It is demonstrated that samples in A357 alloy can be successfully fabricated by LPBF with a density of 99.9% and a mean hardness value achievable of 116 HV0.1, in as-built condition. However, for production purposes, it is fundamental to reduce the residual stresses typical of LPBF. It was shown that a similar hardness value could be obtained after a stress-relieving treatment followed by a proper T6 treatment, together with a coarser but more isotropic microstructure.
RESUMO
The mechanical properties and biocompatibility of titanium alloy medical devices and implants produced by additive manufacturing (AM) technologies - in particular, selective laser melting (SLM), electron beam melting (EBM) and laser metal deposition (LMD) - have been investigated by several researchers demonstrating how these innovative processes are able to fulfil medical requirements for clinical applications. This work reviews the advantages given by these technologies, which include the possibility to create porous complex structures to improve osseointegration and mechanical properties (best match with the modulus of elasticity of local bone), to lower processing costs, to produce custom-made implants according to the data for the patient acquired via computed tomography and to reduce waste.
Assuntos
Ligas , Titânio , Ligas/química , Ligas/uso terapêutico , Titânio/química , Titânio/uso terapêuticoRESUMO
A new biosensor for the real-time analysis of thrombus formation is reported. The fast and accurate monitoring of the individual thrombotic risk represents a challenge in cardiovascular diagnostics and in treatment of hemostatic diseases. Thrombus volume, as representative index of the related thrombotic status, is usually estimated with confocal microscope at the end of each in vitro experiment, without providing a useful behavioral information of the biological sample such as platelets adhesion and aggregation in flowing blood. Our device has been developed to work either independently or integrated with the microscopy system; thus, images of the fluorescently labeled platelets are acquired in real-time during the whole blood perfusion, while the global electrical impedance of the blood sample is simultaneously monitored between a pair of specifically designed gold microelectrodes. Fusing optical and electrical data with a novel technique, the dynamic of thrombus formation events in flowing blood can be reconstructed in real-time, allowing an accurate extrapolation of the three-dimensional shape and the spatial distribution of platelet thrombi forming and growing within artificial capillaries. This biosensor is accurate and it has been used to discriminate different hemostatic conditions and to identify weakening and detaching platelet aggregates. The results obtained appear compatible with those quantified with the traditional optical method. With advantages in terms of small size, user-friendliness and promptness of response, it is a promising device for the fast and automatic individual health monitoring at the Point of Care (POC).
Assuntos
Técnicas Biossensoriais , Plaquetas/metabolismo , Monitorização Fisiológica , Sistemas Automatizados de Assistência Junto ao Leito , Trombose/sangue , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Temperatura Baixa , Impedância Elétrica , Feminino , Humanos , Masculino , Microeletrodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodosRESUMO
The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented.
RESUMO
This paper presents a novel discrete model for cell membranes and electrodes contact impedances alternative to the widely used finite elements. The finite element approach can be considered as a tool for constructing finite dimensional systems of equations that approximate the specific electroquasistatic biological problem on the discrete level. Although the finite element technique is explained typically in terms of variational or weighted-residual approaches, another, less familiar way is available to reformulate geometrically the same physical problem. This approach, referred to as discrete geometric approach, allows a direct link between geometry and the degrees of freedom describing the specific biological problem. It is straightforward to implement in any finite element open software and it assures a correct modeling of voltages and currents playing a fundamental role in a biological problem. The validation has been performed, as a first step, against analytical solutions; then, we considered impedance measurements regarding erythrocytes in whole blood flowing in microchannels at high shear rates.