Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38878110

RESUMO

Microbial forensics is a new discipline of science that analyzes evidence related to biological crime through the uniqueness and abundance of microorganisms and their toxins. Microorganisms remain alive longer than any other trace of biological evidence, such as DNA, fingerprints, and fibers, because of the protective cell membrane or capsules. Microbiological research has opened up various possibilities for forensic investigations of microbial flora. Current molecular technologies, including DNA sequencing, whole-genome sequencing, metagenomics, DNA fingerprinting, and molecular phylogeny, provide valid results for forensic investigations. Recent advancements in genome sequencing technologies, genetic data generation, and bioinformatic tools have significantly improved microbial sampling methods and forensic analyses. In this review, we discuss the applications of microbial genomic tools and technologies in forensic investigations, including human identification, geolocation, and causes of death.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38175312

RESUMO

Saliva components combine with oral cavity microorganisms, blood cells, and airway secretions after entering the oral cavity via salivary ducts; these factors provide relevant information about persons' health state, quality of life, and lifestyle, in addition to their age and gender due to which salivary microbiome has emerged as a subject of significant interest in the forensic domain. This study aims to provide an extensive review of the possible applications of the salivary microbiome in characterizing the habit-specific microbiomes. Thirty-three relevant articles were selected for inclusion in this study. The study highlighted the influence of habits on the salivary microbiome suggesting smokers have distinct bacteria like Synergistetes, Streptococcus, Prevotella, and Veillonella in relation to age; people of higher age have more Prevotella; further, dental plaque can be corelated with Streptococci and Actinomycetes. Likewise, dietary habits, alcoholism, and consumption of coffee also affect bacteria types in oral cavities. The study underscores the added benefits of salivary microbiome profiling in forensics, as it is evident that microbial DNA profiling holds substantial promise for enhancing forensic investigations; it enables the characterization of an individual's habits, such as smoking, alcohol consumption, and dietary preferences; bacteria specific to these habits can be identified, thereby helping to narrow down the pool of potential suspects. In conclusion, the salivary microbiome presents a valuable avenue for forensic science, offering a novel approach which not only enhances the prospects of solving complex cases but also underscores the rich potential of microbiome analysis in the realm of forensic investigation.

3.
Microb Ecol ; 86(3): 1455-1486, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36917283

RESUMO

Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.


Assuntos
Endófitos , Simbiose , Endófitos/fisiologia , Fungos/fisiologia , Estresse Fisiológico , Plantas/microbiologia , Agricultura
4.
Chemphyschem ; 22(12): 1167-1169, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33780571

RESUMO

We show that fluorescence emission in the visible spectral range reported in the case of many nanoparticles, polymers, complexes and liquid crystals with molecular type signatures could originate from the organic impurities leaching from the caps of glass vials.

5.
Environ Res ; 198: 111297, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971130

RESUMO

In the present review, the authors shed light on the SARS-CoV-2 impact, persistence, and monitoring in the soil environment. With this purpose, several aspects have been deepened: i) viruses in soil ecosystems; ii) direct and indirect impact on the soil before and after the pandemic, and iii) methods for quantification of viruses and SARS-CoV-2 monitoring in soil. Viruses are present in soil (i.e. up to 417 × 107 viruses per g TS-1 in wetlands) and can affect the behavior and ecology of other life forms (e.g. bacteria), which are remarkably important for maintaining environmental equilibrium. Also, SARS-CoV-2 can be found in soil (i.e. up to 550 copies·g-1). Considering that the SARS-CoV-2 is very recent, poor knowledge is available in the literature on persistence in the soil and reference has been made to coronaviruses and other families of viruses. For instance, the survival of enveloped viruses (e.g. SARS-CoV) can reach 90 days in soils with 10% of moisture content at ambient. In such a context, the possible spread of the SARS-CoV-2 in the soil was evaluated by analyzing the possible contamination routes.


Assuntos
COVID-19 , SARS-CoV-2 , Ecossistema , Humanos , Pandemias , Solo
6.
Environ Res ; 197: 111126, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831411

RESUMO

There a lot of review papers addressing specific COVID-19 research sectors, then devoted to specialists. This review provides an in-depth summary of the available information about SARS-CoV-2 and the corresponding disease (also known as COVID-19), with a multi-disciplinary approach. After the paper introduction, the first section treats the virological characteristics of SARS-CoV-2, the medical implications of the infection, and the human susceptivity. Great attention is devoted to the factor affecting the infection routes, distinguishing among the possible human-to-human, environmental-to-human, and pollution-to-human transmission mechanisms. The second section is devoted to reporting the impact of SARS-CoV-2 not only on the healthcare systems but also on the economy and society. The third section is devoted to non-pharmaceutical behaviours against COVID-19. In this context, this review section presents an analysis of the European second wave allowing not only to focalize the importance of some restrictions, but also the relevance of social acceptance of some measures. The data reassumed in this work are very useful for interdisciplinary researchers that work in a team to find the basic available information about all the aspects connected with this pandemic (from virus diffusion mechanism to health information, from economic and social impacts to measures to reduce the pandemic spread), with great attention to social acceptance of restriction measures and of vaccines (that currently results to be insufficient to achieve community immunity). Then, this review paper highlights the fundamental role of the trans-multi-disciplinary research that is devoted not only to understand the basics of the pandemic to propose solutions but has also the commitment to find strategies to increase population resilience. For this aim, the authors strongly suggest the establishment of an international health-care trans-multi-disciplinary workforce devoted to investigate, mitigate, and control also future viral events.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2
7.
Environ Res ; 196: 110929, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640498

RESUMO

According to the WHO, on October 16, 2020, the spreading of the SARS-CoV-2, responsible for the COVID-19 pandemic, reached 235 countries and territories, and resulting in more than 39 million confirmed cases and 1.09 million deaths globally. Monitoring of the virus outbreak is one of the main activities pursued to limiting the number of infected people and decreasing the number of deaths that have caused high pressure on the health care, social, and economic systems of different countries. Wastewater based epidemiology (WBE), already adopted for the surveillance of life style and health conditions of communities, shows interesting features for the monitoring of the COVID-19 diffusion. Together with wastewater, the analysis of airborne particles has been recently suggested as another useful tool for detecting the presence of SARS-CoV-2 in given areas. The present review reports the status of research currently performed concerning the monitoring of SARS-CoV-2 spreading by WBE and airborne particles. The former have been more investigated, whereas the latter is still at a very early stage, with a limited number of very recent studies. Nevertheless, the main results highlights in both cases necessitate more research activity for better understating and defining the biomarkers and the related sampling and analysis procedures to be used for this important aim.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , RNA Viral , Águas Residuárias
8.
Phytother Res ; 35(10): 5668-5679, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254371

RESUMO

From ancient history, complementary and alternative medicines have played a significant role as holistic therapeutic treatments of various human diseases including cancer, diabetes, neurological diseases, and skin problems. One Indian medicinal plant (herb), Bacopa monnieri has been used in many parts of the world as such medicine, particularly for the treatment of various neurological disorders. It is well known as a potent "tonic for the human brain," which serves as a memory enhancer. Multiple studies proved that this herb contains a plethora of potential bioactive, phytochemical compounds with synergistic properties. The main purpose of the present review is to shed light on the use of Bacopa monnieri and its active principles (bacosides) in the management of neurological disorders. Furthermore, the signaling pathways modulated by bacosides have been critically discussed in this review. Moreover, we have critically summarized the present knowledge of this perennial creeping herb based upon the literature mining from different scientific engines.


Assuntos
Bacopa , Doenças do Sistema Nervoso , Plantas Medicinais , Triterpenos , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Extratos Vegetais/farmacologia
9.
Phytother Res ; 35(11): 6010-6029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34237796

RESUMO

Marijuana, or Cannabis sativa L., is a common psychoactive plant used for both recreational and medicinal purposes. In many countries, cannabis-based medicines have been legalized under certain conditions because of their immense prospects in medicinal applications. With a comprehensive insight into the prospects and challenges associated with the pharmacological use and global trade of C. sativa, this mini-review focuses on the medicinal importance of the plant and its legal status worldwide; the pharmacological compounds and its therapeutic potential along with the underlying public health concerns and future perspective are herein discussed. The existence of major compounds including Δ9 -tetrahydrocannabinol (Δ9 -THC), cannabidiol, cannabinol, and cannabichromene contributes to the medicinal effects of the cannabis plant. These compounds are also involved in the treatment of various types of cancer, epilepsy, and Parkinson's disease displaying several mechanisms of action. Cannabis sativa is a plant with significant pharmacological potential. However, several aspects of the plant need an in-depth understanding of the drug mechanism and its interaction with other drugs. Only after addressing these health concerns, legalization of cannabis could be utilized to its full potential as a future medicine.


Assuntos
Canabidiol , Cannabis , Canabidiol/farmacologia , Dronabinol
10.
Phytother Res ; 35(7): 3590-3609, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666283

RESUMO

Plants of the genus Brassica occupy the top place among vegetables in the world. This genus, which contains a group of six related species of a global economic significance, three of which are diploid: Brassica nigra (L.) K. Koch, Brassica oleracea L., and Brassica rapa L. and three are amphidiploid species: Brassica carinata A. Braun, Brassica juncea (L.) Czern., and Brassica napus L. These varieties are divided into oily, fodder, spice, and vegetable based on their morphological structure, chemical composition, and usefulness of plant organs. The present review provides information about habitat, phytochemical composition, and the bioactive potential of Brassica plants, mainly antioxidant, antimicrobial, anticancer activities, and clinical studies in human. Brassica vegetables are of great economic importance around the world. At present, Brassica plants are grown together with cereals and form the basis of global food supplies. They are distinguished by high nutritional properties from other vegetable plants, such as low fat and protein content and high value of vitamins, fibers along with minerals. In addition, they possess several phenolic compounds and have a unique type of compounds namely glucosinolates that differentiate these crops from other vegetables. These compounds are also responsible for numerous biological activities to the genus Brassica as described in this review.


Assuntos
Brassica , Compostos Fitoquímicos , Verduras , Brassica/química , Glucosinolatos , Humanos , Compostos Fitoquímicos/farmacologia , Fitoterapia , Verduras/química
11.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805113

RESUMO

According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Engenharia Genética/métodos , Animais , Archaea/metabolismo , Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Produtos Agrícolas/genética , Engenharia Genética/história , Genoma , História do Século XX , História do Século XXI , Humanos , Gado
12.
J Environ Manage ; 224: 361-375, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059934

RESUMO

Cyanobacteria, also known as blue green algae are one of the important ubiquitous oxygen evolving photosynthetic prokaryotes and ultimate source of nitrogen for paddy fields since decades. In past two decades, indiscriminated use of pesticides led to biomagnification that intensively harm the structure and soil functions of soil microbes including cyanobacteria. Cyanobacterial abundance biomass, short generation, water holding capacity, mineralizing capacity and more importantly nitrogen fixing have enormous potential to abate the negative effects of pesticides. Therefore, investigation of the ecotoxicological effects of pesticides on the structure and function of the tropical paddy field associated cyanobacteria is urgent and need to estimate the fate of interaction of pesticides over nitrogen fixations and other attributes. In this regard, comprehensive survey over cyanobacterial distribution patterns and their interaction with pesticides in Indian context has been deeply reviewed. In addition, the present paper also deals the molecular docking pattern of pesticides with the nitrogen fixing proteins, which helps in revealing the functional interpretation over nitrogen fixation process.


Assuntos
Cianobactérias , Praguicidas , Simulação de Acoplamento Molecular , Fixação de Nitrogênio , Oryza , Fotossíntese
13.
Environ Sci Technol ; 50(21): 11825-11836, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689892

RESUMO

Integrons are extensively targeted as a proxy for anthropogenic impact in the environment. We developed a novel high-throughput amplicon sequencing pipeline that enables characterization of thousands of integron gene cassette-associated reads, and applied it to acquire a comprehensive overview of gene cassette composition in effluents from wastewater treatment facilities across Europe. Between 38 100 and 172 995 reads per-sample were generated and functionally characterized by screening against nr, SEED, ARDB and ß-lactamase databases. Over 75% of the reads were characterized as hypothetical, but thousands were associated with toxin-antitoxin systems, DNA repair, cell membrane function, detoxification and aminoglycoside and ß-lactam resistance. Among the reads characterized as ß-lactamases, the carbapenemase blaOXA was dominant in most of the effluents, except for Cyprus and Israel where blaGES was also abundant. Quantitative PCR assessment of blaOXA and blaGES genes in the European effluents revealed similar trends to those displayed in the integron amplicon sequencing pipeline described above, corroborating the robustness of this method and suggesting that these integron-associated genes may be excellent targets for source tracking of effluents in downstream environments. Further application of the above analyses revealed several order-of-magnitude reductions in effluent-associated ß-lactamase genes in effluent-saturated soils, suggesting marginal persistence in the soil microbiome.


Assuntos
Integrons/genética , Águas Residuárias , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Análise de Sequência de DNA , Resistência beta-Lactâmica/genética , beta-Lactamases/metabolismo
14.
Bioorg Med Chem Lett ; 24(17): 4243-6, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25088398

RESUMO

A new series of diverse isoxazoles and triazoles linked 6-hydroxycoumarin (1) were synthesized using click chemistry approach. All the derivatives were subjected to 3-(4,5-dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) cytotoxicity screening against a panel of five different human cancer cell lines viz. prostate (PC-3), colon (HCT-116 and Colo-205), leukemia (HL-60) and lung (A-549) to check their cytotoxic potential. Interestingly, among the tested molecules, some of the analogs displayed better cytotoxic activity than the parent 6-hydroxycoumarin (1). Of the synthesized isoxazoles, compounds 10 and 13 showed the best activity with IC50 of 8.2 and 13.6 µM against PC-3 cancer cell line, while as, among the triazoles, compounds 23 and 25 were the most active with the IC50 of 10.2 and 12.6 µM against A-549 cancer cell line. The other derivatives showed almost comparable activity with that of the parent molecule. The present study resulted in identification of ortho substituted isoxazole and triazole derivatives of 6-hydroxycoumarin as effective cytotoxic agents against prostate (PC-3) and lung (A-549) cancer cell lines, respectively.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Cumarínicos/toxicidade , Isoxazóis/toxicidade , Triazóis/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HL-60 , Humanos , Isoxazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química
15.
3 Biotech ; 14(4): 107, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476645

RESUMO

Antibiotics in animal farms play a significant role in the proliferation and spread of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB). The dissemination of antibiotic resistance from animal facilities to the nearby environment has become an emerging concern. The present study was focused on the isolation and molecular identification of Escherichia coli (E. coli) isolates from broiler chicken meat and further access their antibiotic-resistant profile against different antibiotics. Broiler chicken meat samples were collected from 44 retail poultry slaughter shops in Prayagraj district, Uttar Pradesh, India. Standard bacteriological protocols were followed to first isolate the E. coli, and molecular characterization was performed with genus-specific PCR. Phenotypic and genotypic antibiotic-resistant profiles of all confirmed 154 E. coli isolates were screened against 09 antibiotics using the disc diffusion and PCR-based method for selected resistance genes. In antibiotic sensitivity testing, the isolates have shown maximum resistance potential against tetracycline (78%), ciprofloxacin (57.8%), trimethoprim (54.00%) and erythromycin (49.35%). E. coli bacterial isolates have shown relative resistant to amoxicillin-clavulanic acid (43.00%) and against ampicillin (44.15%). Notably, 64.28% E. coli bacteria were found to be multidrug resistant. The results of PCR assays exposed that tetA and blaTEM genes were the most abundant genes harboured by 83 (84.0%) and 82 (82.0%) out of all 99 targeted E. coli isolates, followed by 48.0% for AmpC (CITM) gene and cmlA (23.00%) for chloramphenicol resistance. It is notable that most of the isolates collected from chicken meat samples were multidrug resistant (> 3 antibiotics), with more than 80% of them carrying tetracycline (tetA) and beta-lactam gene (blaTEM). This study highlights the high risk associated with poultry products due to MDR-E. coli and promote the limited use of antibiotics in poultry farms. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03950-7.

16.
Mol Biotechnol ; 65(2): 273-281, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36109427

RESUMO

CRISPR-Cas is a widespread anti-viral adaptive immune system in the microorganisms. Viruses living in bacteria or some phages carry anti-CRISPR proteins to evade immunity by CRISPR-Cas. The anti-CRISPR proteins are prevalent in phages capable of lying dormant in a CRISPR-carrying host, while their orthologs frequently found in virulent phages. Here, we propose a probabilistic strategy of ancestral sequence reconstruction (ASR) and Hidden Markov Model (HMM) profile search to fish out sequences of anti-CRISPR proteins from environmental metagenomic, human microbiome metagenomic, human microbiome reference genome, and NCBI's non-redundant databases. Our results revealed that the metagenome database dark matter might contain anti-CRISPR encoding genes.


Assuntos
Bactérias , Bacteriófagos , Humanos , Filogenia , Bactérias/genética , Bacteriófagos/genética , Metagenoma , Sistemas CRISPR-Cas
17.
Forensic Sci Int ; 353: 111871, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939434

RESUMO

Characterization of human saliva through Next-Generation Sequencing has emerged as a valuable tool for understanding the complex microbial communities residing in the oral cavity. This study aims to investigate the habit-based variations in the salivary microbiome using Next-Generation Sequencing technology. Saliva samples were collected from a diverse population representing different habits, including smoking, alcohol consumption, and vegan diet. The DNA from the samples was extracted, and the V3-V4 region of the 16 S rRNA gene was amplified for Next-Generation Sequencing analysis. The obtained sequences were processed and analysed using bioinformatics tools to determine the microbial composition and diversity. Preliminary results revealed distinct microbial profiles associated with different habits, indicating the potential influence of different habits on the salivary microbiome. Smokers exhibited a higher abundance of certain pathogenic bacteria, while alcohol consumers showed alterations in microbial diversity compared to non-consumers. Furthermore, individuals with vegan diet demonstrated an increased prevalence of specific bacteria. These findings highlight the significance of habit-based characterization of the salivary microbiome and its potential implications in the presence of certain bacteria. Understanding the relationship between habits and the salivary microbiome could contribute to developing personalized approaches for estimating and identifying any particular individual. Further research is warranted to explore additional factors and expand the scope of habit-based analysis in saliva-based microbial characterization through Next-Generation Sequencing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Saliva , Humanos , Saliva/microbiologia , RNA Ribossômico 16S/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bactérias/genética , Hábitos
18.
J Biomol Struct Dyn ; 41(18): 8918-8926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36307908

RESUMO

Recent reports suggest that persistent Epstein-Barr virus (EBV) infection and its recurrent reactivation could instigate the formation of proteinaceous plaques in the brain: a hallmark of Alzheimer's disease (AD). Interestingly, a major genetic risk factor of AD, the apolipoprotein E (ApoE), could also influence the outcome of EBV infection in an individual. The ApoE is believed to influence the proteinaceous plaque clearance from the brain, and its defective functioning could result in the aggregate deposition. The persistent presence of EBV infection in a genetically predisposed individual could create a perfect recipe for severe neurodegenerative consequences. Therefore, in the present study, we investigated the possible interactions between ApoE and various EBV proteins using computational tools. Our results showed possibly stable de-novo interactions between the C-terminal domain of ApoE3 and EBV proteins: EBV nuclear antigen-1 (EBNA1) and BamHI Z fragment leftward open reading frame-1 (BZLF1). The EBNA1 protein of EBV plays a crucial role in establishing latency and replication of the virus. Whereas BZLF1 is involved in the lytic replication cycle. The proposed interaction of EBV proteins at the ligand-binding site of ApoE3 on CTD could interfere with- its capability to sequester amyloid fragments and, hence their clearance from the brain giving rise to AD pathology. This study provides a new outlook on EBV's underexplored role in AD development and paves the way for novel avenues of investigation which could further our understanding of AD pathogenesis.Communicated by Ramaswamy H. Sarma[Figure: see text].

19.
J Biomol Struct Dyn ; : 1-23, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105230

RESUMO

Since the end of February 2020, the world has come to a standstill due to the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Since then, the global scientific community has explored various remedies and treatments against this virus, including natural products that have always been a choice because of their many benefits. Various known phytochemicals are well documented for their antiviral properties. Research is being carried out to discover new natural plant products or existing ones as a treatment measure for this disease. The three important targets in this regard are-papain like protease (PLpro), spike protein, and 3 chymotrypsin like proteases (3CLpro). Various docking studies are also being elucidated to identify the phytochemicals that modulate crucial proteins of the virus. The paper is simultaneously a comprehensive review that covers recent advances in the domain of the effect of various botanically derived natural products as an alternative treatment approach against Coronavirus Disease 2019 (COVID-19). Furthermore, the docking analyses revealed that rutin (inhibitor of the major protease of SARS-CoV-2), gallocatechin (e.g., interacting with 03 hydrogen bonds with a spike-like protein), lycorine (showing the best binding affinity with amino acids GLN498, THR500 and GLY446 of the spike-like protein), and quercetrin (inhabiting at its residues ASP216, PHE219, and ILE259) are promising inhibitors of SARS­CoV­2.Communicated by Ramaswamy H. Sarma.

20.
Exp Mol Pathol ; 92(1): 7-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22015804

RESUMO

Dectin-1, is a type II transmembrane receptor protein which contains a single extracellular CTLD (C-type lectin domain), stalk, transmembrane domain and an ITAM (immunoreceptor tyrosine-based activation motifs) in its cytoplasmic tail. Dectin-1 has the ability to recognize fungal ß-glucans, which are carbohydrate PAMPs found predominantly in fungal cell walls. The recognition of fungal ß-glucans by Dectin-1 helps in a variety of cellular responses, like host protection, such as fungal uptake and killing, and the production of inflammatory cytokines and chemokines. In this study we predicted the 3D (three dimensional) structure of Dectin-1 receptor based on homology modeling using MODELLER 9v8 software. The TMHMM server was used for the prediction of transmembrane helices. DALI, PROFUNC, Q-Site Finder, PINTS servers and PASS software used for the prediction of functional sites in the modeled Dectin-1 receptor. The docking investigation of Dectin-1 receptor with ß-glucan suggests that ASP150, ASP113, GLY106, and GLU196 amino acids are the catalytic residues which form a shallow groove in the protein surface and bind to ligand ß-glucan. We hope that this work will help in in-silico screening, structure-based design, and in understanding the structural basis of ligand binding to the Dectin-1 receptor.


Assuntos
Búfalos/metabolismo , Fungos/metabolismo , Lectinas Tipo C/metabolismo , Modelos Moleculares , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Parede Celular/metabolismo , Lectinas Tipo C/química , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de Proteína , beta-Glucanas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA