Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Limnol Oceanogr ; 61(Suppl 1): S175-S187, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27881883

RESUMO

River-floodplain systems are characterized by changing hydrological connectivity and variability of resources delivered to floodplain water bodies. Although the importance of hydrological events has been recognized, the effect of flooding on CH4 concentrations and emissions from European, human-impacted river-floodplains is largely unknown. This study evaluates aquatic concentrations and emissions of CH4 from a highly modified, yet partly restored river-floodplain system of the Danube near Vienna (Austria). We covered a broad range of hydrological conditions, including a 1-yr flood event in 2012 and a 100-yr flood in 2013. Our findings demonstrate that river-floodplain waters were supersaturated with CH4, hence always serving as a source of CH4 to the atmosphere. Hydrologically isolated habitats in general have higher concentrations and produce higher fluxes despite lower physically defined velocities. During surface connection, however, CH4 is exported from the floodplain to the river, suggesting that the main channel serves as an "exhaust pipe" for the floodplain. This mechanism was especially important during the 100-yr flood, when a clear pulse of CH4 was flushed from the floodplain with surface floodwaters. Our results emphasize the importance of floods differing in magnitude for methane evasion from river-floodplains; 34% more CH4 was emitted from the entire system during the year with the 100-yr flood compared to a hydrologically "normal" year. Compared to the main river channel, semiisolated floodplain waters were particularly strong sources of CH4. Our findings also imply that the predicted increased frequency of extreme flooding events will have significant consequences for methane emission from river-floodplain systems.

2.
Ecol Eng ; 42(100): 73-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23565037

RESUMO

Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems.

3.
Environ Model Softw ; 26(9): 1097-1111, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27667961

RESUMO

The hydrological exchange conditions strongly determine the biogeochemical dynamics in river systems. More specifically, the connectivity of surface waters between main channels and floodplains is directly controlling the delivery of organic matter and nutrients into the floodplains, where biogeochemical processes recycle them with high rates of activity. Hence, an in-depth understanding of the connectivity patterns between main channel and floodplains is important for the modelling of potential gas emissions in floodplain landscapes. A modelling framework that combines steady-state hydrodynamic simulations with long-term discharge hydrographs was developed to calculate water depths as well as statistical probabilities and event durations for every node of a computation mesh being connected to the main river. The modelling framework was applied to two study sites in the floodplains of the Austrian Danube River, East of Vienna. Validation of modelled flood events showed good agreement with gauge readings. Together with measured sediment properties, results of the validated connectivity model were used as basis for a predictive model yielding patterns of potential microbial respiration based on the best fit between characteristics of a number of sampling sites and the corresponding modelled parameters. Hot spots of potential microbial respiration were found in areas of lower connectivity if connected during higher discharges and areas of high water depths.

4.
River Res Appl ; 36(5): 843-851, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32733167

RESUMO

Connectivity of nurseries and spawning habitats for young of the year life stage is essential for successful recruitment of fish populations and therefore provides a key indicator for river restoration measures. Models for dispersal offer the potential to draw conclusions regarding restoration scenarios and to fill knowledge gaps about possible implications for fish populations. A newly developed rheoreaction-based correlated random walk model (RCRW), in combination with a three-dimensional numerical model and a non-steady-state particle tracing model, was applied for nase carp larvae (Chondrostoma nasus) before and after a restoration project on the river Danube, Austria. Spatio-temporal patterns of dispersal of virtual larvae, attached with rheoreactive behaviour, were analysed within both scenarios. In comparison to the heavily modified river reach, the restored reach enabled a greater amount of upstream movement from the release site and showed a generally higher variability of spatio-temporal distribution patterns. In contrast, estimated total settlement of rheoreactive larvae was substantially higher for the situation prior to the restoration measure. By comparing model results with a previously field experiment it was found that model simulations including rheoreaction as a single behaviour for navigation could not explain the whole pattern of larval dispersal. Therefore it is highly recommended for future studies to develop larval dispersal models by considering other factors (i.e., behaviour, bio-energetics and environmental factors) of existing and future individual-based models, which could serve as a tool to analyse the effect of restoration measures for recruitment of riverine fish populations.

5.
Environ Pollut ; 188: 177-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24602762

RESUMO

Previous studies on plastic pollution of aquatic ecosystems focused on the world's oceans. Large rivers as major pathways for land-based plastic litter, has received less attention so far. Here we report on plastic quantities in the Austrian Danube. A two year survey (2010, 2012) using stationary driftnets detected mean plastic abundance (n = 17,349; mean ± S.D: 316.8 ± 4664.6 items per 1000 m(-3)) and mass (4.8 ± 24.2 g per 1000 m(-3)) in the river to be higher than those of drifting larval fish (n = 24,049; 275.3 ± 745.0 individuals. 1000 m(-3) and 3.2 ± 8.6 g 1000 m(-3)). Industrial raw material (pellets, flakes and spherules) accounted for substantial parts (79.4%) of the plastic debris. The plastic input via the Danube into the Black Sea was estimated to 4.2 t per day.


Assuntos
Monitoramento Ambiental , Plásticos/análise , Rios/química , Poluentes Químicos da Água/análise , Animais , Áustria , Ecossistema , Peixes/classificação , Peixes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Resíduos/análise , Resíduos/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA