Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(3): 473-488, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36018820

RESUMO

Kinesins are motor proteins involved in microtubule (MT)-mediated intracellular transport. They contribute to key cellular processes, including intracellular trafficking, organelle dynamics and cell division. Pathogenic variants in kinesin-encoding genes underlie several human diseases characterized by an extremely variable clinical phenotype, ranging from isolated neurodevelopmental/neurodegenerative disorders to syndromic phenotypes belonging to a family of conditions collectively termed as 'ciliopathies.' Among kinesins, kinesin-1 is the most abundant MT motor for transport of cargoes towards the plus end of MTs. Three kinesin-1 heavy chain isoforms exist in mammals. Different from KIF5A and KIF5C, which are specifically expressed in neurons and established to cause neurological diseases when mutated, KIF5B is an ubiquitous protein. Three de novo missense KIF5B variants were recently described in four subjects with a syndromic skeletal disorder characterized by kyphomelic dysplasia, hypotonia and DD/ID. Here, we report three dominantly acting KIF5B variants (p.Asn255del, p.Leu498Pro and p.Leu537Pro) resulting in a clinically wide phenotypic spectrum, ranging from dilated cardiomyopathy with adult-onset ophthalmoplegia and progressive skeletal myopathy to a neurodevelopmental condition characterized by severe hypotonia with or without seizures. In vitro and in vivo analyses provide evidence that the identified disease-associated KIF5B variants disrupt lysosomal, autophagosome and mitochondrial organization, and impact cilium biogenesis. All variants, and one of the previously reported missense changes, were shown to affect multiple developmental processes in zebrafish. These findings document pleiotropic consequences of aberrant KIF5B function on development and cell homeostasis, and expand the phenotypic spectrum resulting from altered kinesin-mediated processes.


Assuntos
Cinesinas , Animais , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Mamíferos/metabolismo , Hipotonia Muscular , Neurônios/metabolismo , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Epilepsia ; 65(2): e7-e13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065833

RESUMO

Dravet syndrome (DS) is a rare developmental and epileptic encephalopathy. Infants with DS are especially vulnerable to the detrimental effects of prolonged and frequent seizures on development. Fenfluramine (FFA) is approved for the treatment of DS in patients aged 2 years and older. This study aims to evaluate the safety and efficacy of FFA in patients with DS younger than 2 years. We analyzed safety, tolerability, seizure, and neuropsychological outcome in a real-world setting. Developmental profile was investigated using Griffiths Mental Development Scales (GMDS). Five patients received FFA at a mean age of 14.9 months (9.6-18.6). Median follow-up was 13 months (interquartile range [IQR] = 12.9-24.4). All patients showed good tolerance to FFA. No significant variation of body mass index or echocardiographic issue was observed. Monthly median convulsive seizure frequency (MCSF) was 1.71 (IQR = 1.56-3.27) at the 6-month baseline period and .92 (IQR = .43-1.28) at last follow-up, with a median 54.43 (IQR = 40.91-60.83) percentage reduction in MCSF. Two of five patients had a performance improvement on GMDS subscales. Overall, the use of FFA below the age of 2 years in our small sample of patients was safe and represents a promising opportunity for seizure control and for protection of the neurodevelopmental outcome.


Assuntos
Epilepsias Mioclônicas , Fenfluramina , Lactente , Humanos , Fenfluramina/efeitos adversos , Anticonvulsivantes/uso terapêutico , Resultado do Tratamento , Epilepsias Mioclônicas/tratamento farmacológico , Convulsões/tratamento farmacológico
3.
Epilepsy Behav ; 157: 109846, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820683

RESUMO

The post-surgical outcome for Hypothalamic Hamartoma (HH) related epilepsy in terms of seizure freedom (SF) has been extensively studied, while cognitive and psychiatric outcome has been less frequently reported and defined. This is a systematic review of English language papers, analyzing the post-surgical outcome in series of patients with HH-related epilepsy (≥5 patients, at least 6 months follow-up), published within January 2002-December 2022. SF was measured using Engel scale/equivalent scales. We looked at the outcome related to different surgical techniques, and HH types according to Delalande classification. We evaluated the neuropsychological and neuropsychiatric status after surgery, and the occurrence of post-surgical complications. Forty-six articles reporting 1318 patients were included, of which ten pediatric series. SF was reported in 686/1222 patients (56,1%). Delalande classification was reported in 663 patients from 24 studies, of which 70 were type I HH (10%), 320 were type II HH (48%), 189 were type III HH (29%) and 84 were type IV HH (13%). The outcome in term of SF was reported in 243 out of 663 patients. SF was reported in 12 of 24 type I HH (50%), 80 of 132 type II HH (60,6%), 32 of 59 type III HH (54,2%) and 12 of 28 type IV HH (42,9%). SF was reached in 129/262 (49,2%) after microsurgery, 102/199 (51,3%) after endoscopic surgery, 46/114 (40,6%) after gamma knife surgery, 245/353 (69,4%) after radiofrequency thermocoagulation, and 107/152 (70,4%) after MRI-guided laser interstitial thermal therapy. Hyperphagia/weight gain were the most reported surgical complications. Others were electrolyte alterations, diabetes insipidus, hypotiroidism, transient hyperthermia/poikilothermia. The highest percentage of memory deficits was reported after microsurgery, while hemiparesis and cranial nerves palsy were reported after microsurgery or endoscopic surgery. Thirty studies reported developmental delay/intellectual disability in 424/819 (51,7%) patients. 248/346 patients obtained a global improvement (72%), 70/346 were stable (20%), 28/346 got worse (8%). 22 studies reported psychiatric disorders in 257/465 patients (55,3%). 78/98 patients improved (80%), 13/98 remained stable (13%), 7/98 got worse (7%). Most of the patients had non-structured cognitive/psychiatric assessments. Based on the available data, the surgical management in patients with HH related epilepsy should be individualized, aiming to reach not only the best epilepsy result, but also the optimal cognitive and psychiatric outcome.

4.
Cereb Cortex ; 33(17): 9709-9717, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37429835

RESUMO

The clinical phenotype of Cyclin-Dependent Kinase-Like 5 (CDKL5) deficiency disorder (CDD) has been delineated but neuroimaging features have not been systematically analyzed. We studied brain magnetic resonance imaging (MRI) scans in a cohort of CDD patients and reviewed age at seizure onset, seizure semiology, head circumference. Thirty-five brain MRI from 22 unrelated patients were included. The median age at study entry was 13.4 years. In 14/22 patients (85.7%), MRI in the first year of life was unremarkable in all but two. In 11/22, we performed MRI after 24 months of age (range 2.5-23 years). In 8 out of 11 (72.7%), MRI showed supratentorial atrophy and in six cerebellar atrophy. Quantitative analysis detected volumetric reduction of the whole brain (-17.7%, P-value = 0.014), including both white matter (-25.7%, P-value = 0.005) and cortical gray matter (-9.1%, P-value = 0.098), with a reduction of surface area (-18.0%, P-value = 0.032), mainly involving the temporal regions, correlated with the head circumference (ρ = 0.79, P-value = 0.109). Both the qualitative structural assessment and the quantitative analysis detected brain volume reduction involving the gray and white matter. These neuroimaging findings may be related to either progressive changes due to CDD pathogenesis, or to the extreme severity of epilepsy, or both. Larger prospective studies are needed to clarify the bases for the structural changes we observed.


Assuntos
Espasmos Infantis , Humanos , Espasmos Infantis/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Convulsões/patologia , Atrofia/patologia , Proteínas Serina-Treonina Quinases/genética
5.
Genet Med ; 25(7): 100859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37092538

RESUMO

PURPOSE: The study aimed to clinically and molecularly characterize the neurodevelopmental disorder associated with heterozygous de novo variants in CNOT9. METHODS: Individuals were clinically examined. Variants were identified using exome or genome sequencing. These variants were evaluated using in silico predictions, and their functional relevance was further assessed by molecular models and research in the literature. The variants have been classified according to the criteria of the American College of Medical Genetics. RESULTS: We report on 7 individuals carrying de novo missense variants in CNOT9, p.(Arg46Gly), p.(Pro131Leu), and p.(Arg227His), and, recurrent in 4 unrelated individuals, p.(Arg292Trp). All affected persons have developmental delay/intellectual disability, with 5 of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities. Molecular modeling predicted that the variants are damaging and would lead to reduced protein stability or impaired recognition of interaction partners. Functional analyses in previous studies showed a pathogenic effect of p.(Pro131Leu) and p.(Arg227His). CONCLUSION: We propose CNOT9 as a novel gene for neurodevelopmental disorder and epilepsy.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Epilepsia/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Convulsões/genética
6.
Epilepsia ; 64(5): 1331-1347, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36636894

RESUMO

OBJECTIVE: This study was undertaken to refine the spectrum of SCN1A epileptic disorders other than Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+) and optimize antiseizure management by correlating phenotype-genotype relationship and functional consequences of SCN1A variants in a cohort of patients. METHODS: Sixteen probands carrying SCN1A pathogenic variants were ascertained via a national collaborative network. We also performed a literature review including individuals with SCN1A variants causing non-DS and non-GEFS+ phenotypes and compared the features of the two cohorts. Whole cell patch clamp experiments were performed for three representative SCN1A pathogenic variants. RESULTS: Nine of the 16 probands (56%) had de novo pathogenic variants causing developmental and epileptic encephalopathy (DEE) with seizure onset at a median age of 2 months and severe intellectual disability. Seven of the 16 probands (54%), five with inherited and two with de novo variants, manifested focal epilepsies with mild or no intellectual disability. Sodium channel blockers never worsened seizures, and 50% of patients experienced long periods of seizure freedom. We found 13 SCN1A missense variants; eight of them were novel and never reported. Functional studies of three representative variants showed a gain of channel function. The literature review led to the identification of 44 individuals with SCN1A variants and non-DS, non-GEFS+ phenotypes. The comparison with our cohort highlighted that DEE phenotypes are a common feature. SIGNIFICANCE: The boundaries of SCN1A disorders are wide and still expanding. In our cohort, >50% of patients manifested focal epilepsies, which are thus a frequent feature of SCN1A pathogenic variants beyond DS and GEFS+. SCN1A testing should therefore be included in the diagnostic workup of pediatric, familial and nonfamilial, focal epilepsies. Alternatively, non-DS/non-GEFS+ phenotypes might be associated with gain of channel function, and sodium channel blockers could control seizures by counteracting excessive channel function. Functional analysis evaluating the consequences of pathogenic SCN1A variants is thus relevant to tailor the appropriate antiseizure medication.


Assuntos
Epilepsias Mioclônicas , Epilepsias Parciais , Canal de Sódio Disparado por Voltagem NAV1.1 , Humanos , Causalidade , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Mutação com Ganho de Função , Deficiência Intelectual/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Bloqueadores dos Canais de Sódio/uso terapêutico
7.
Epilepsia ; 64(5): 1351-1367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779245

RESUMO

OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.


Assuntos
Encefalopatias , Síndromes Epilépticas , Espasmos Infantis , Humanos , Encefalopatias/genética , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/genética , Espasmos Infantis/complicações , Convulsões/diagnóstico por imagem , Convulsões/genética , Convulsões/complicações , Encéfalo/patologia , Síndromes Epilépticas/complicações , Eletroencefalografia , Espasmo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Epilepsy Behav ; 147: 109436, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717460

RESUMO

CSNK2B encodes a regulatory subunit of casein kinase II, which is highly expressed in the brain. Heterozygous pathogenic variants in CSNK2B are associated with Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) (OMIM #618732), characterized by facial dysmorphisms, seizures, intellectual disability, and behavioral disturbances. We report ten new patients with CSNK2B-related Neurodevelopmental Syndrome associated with heterozygous variants of CSNK2B. In three patients, a pathogenic variant was inherited from an affected parent. We describe both molecular and clinical features, focusing on epileptic and neurodevelopmental phenotypes. The median age at follow-up was 8.5 years (range 21 months-42 years). All patients had epilepsy, with onset at a median age of 10.5 months range 6 days-10 years). Seizures were both focal and generalized and were resistant to anti-seizure medications in two out of ten patients. Six patients had mild to moderate cognitive delays, whereas four patients had no cognitive disability. Although all previously reported patients had a de novo CSNK2B pathogenic variant, here we report, for the first time, two familial cases of CSNK2B-related Neurodevelopmental Syndrome. We confirmed the highly variable expressivity of the disease among both interfamilial and intrafamilial cases. Furthermore, this study provides information about the long-term outcome in adult patients and underlines the importance of detailed family history collection before performing genetic testing in patients with epilepsy and neurodevelopmental disorders.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Humanos , Lactente , Recém-Nascido , Epilepsia/genética , Epilepsia/patologia , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Deficiência Intelectual/genética , Síndrome , Fenótipo
9.
Epilepsia ; 63(1): 6-21, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741464

RESUMO

Autism spectrum disorder (ASD) is frequently associated with infants with epileptic encephalopathy, and early interventions targeting social and cognitive deficits can have positive effects on developmental outcome. However, early diagnosis of ASD among infants with epilepsy is complicated by variability in clinical phenotypes. Commonality in both biological and molecular mechanisms have been suggested between ASD and epilepsy, such as occurs with tuberous sclerosis complex. This review summarizes the current understanding of causal mechanisms between epilepsy and ASD, with a particularly genetic focus. Hypothetical explanations to support the conjugation of the two conditions include abnormalities in synaptic growth, imbalance in neuronal excitation/inhibition, and abnormal synaptic plasticity. Investigation of the probable genetic basis has implemented many genes, although the main risk supports existing hypotheses in that these cluster to abnormalities in ion channels, synaptic function and structure, and transcription regulators, with the mammalian target of rapamycin (mTOR) pathway and "mTORpathies" having been a notable research focus. Experimental models not only have a crucial role in determining gene functions but are also useful instruments for tracing disease trajectory. Precision medicine from gene therapy remains a theoretical possibility, but more contemporary developments continue in molecular tests to aid earlier diagnoses and better therapeutic targeting.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Esclerose Tuberosa , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/terapia , Humanos , Biologia Molecular , Fenótipo , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética , Esclerose Tuberosa/terapia
10.
Epilepsy Behav ; 131(Pt B): 107896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741238

RESUMO

Risk of sudden unexpected death in epilepsy (SUDEP) in children is influenced by different factors such as etiology, seizure type and frequency, treatment, and environment. A greater severity of epilepsy, in terms of seizure frequency, seizures type, especially with nocturnal generalized tonic-clonic seizures (GTCS), and resistance to anti-seizure medication are predisposing factors to SUDEP. Potential mechanisms of SUDEP might involve respiratory, cardiovascular, and central autonomic dysfunctions, either combined or in isolation. Patients with epilepsy carrying mutations in cardiac channelopathy genes might be disposed to seizure-induced arrhythmias. Other than in channelopathies, SUDEP has been reported in further patients with genetic epilepsies due to mutations of genes such as DEPDC5, TBC1D24, FHF1, or 5q14.3 deletion. Age-related electro-clinical differences in GTCS may therefore be relevant in explaining differences in SUDEP between adults and children. Typical GTCS represent a rare seizure type in infants and toddlers, they are characterized by a shorter tonic phase and, in direct proportion, by shorter postictal generalized EEG suppression (PGES). The presence of night-time supervision has been found to reduce SUDEP risk, likely reducing SUDEP incidence in children. Reconsideration of safety protocols in epilepsy monitoring units with the aim of reducing the risk of SUDEP, and the use of devices for seizure detection, might contribute to reduce the risk of death in patients affected by epilepsy. This article is part of the Special Issue "Severe Infantile Epilepsies".


Assuntos
Epilepsia , Morte Súbita Inesperada na Epilepsia , Eletroencefalografia , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Humanos , Lactente , Monitorização Fisiológica , Fatores de Risco , Convulsões/complicações , Morte Súbita Inesperada na Epilepsia/epidemiologia
11.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408865

RESUMO

PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Animais , Encéfalo/patologia , Caderinas/genética , Análise por Conglomerados , Epilepsia/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Organoides/patologia , Protocaderinas , Peixe-Zebra
12.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361691

RESUMO

Complex genomic rearrangements (CGRs) are structural variants arising from two or more chromosomal breaks, which are challenging to characterize by conventional or molecular cytogenetic analysis (karyotype and FISH). The integrated approach of standard and genomic techniques, including optical genome mapping (OGM) and genome sequencing, is crucial for disclosing and characterizing cryptic chromosomal rearrangements at high resolutions. We report on a patient with a complex developmental and epileptic encephalopathy in which karyotype analysis showed a de novo balanced translocation involving the long arms of chromosomes 2 and 18. Microarray analysis detected a 194 Kb microdeletion at 2q24.3 involving the SCN2A gene, which was considered the likely translocation breakpoint on chromosome 2. However, OGM redefined the translocation breakpoints by disclosing a paracentric inversion at 2q24.3 disrupting SCN1A. This combined genomic high-resolution approach allowed a fine characterization of the CGR, which involves two different chromosomes with four breakpoints. The patient's phenotype resulted from the concomitant loss of function of SCN1A and SCN2A.


Assuntos
Encefalopatias , Aberrações Cromossômicas , Humanos , Cariotipagem , Translocação Genética , Inversão Cromossômica , Cariótipo , Genômica , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.1
13.
Cereb Cortex ; 30(11): 6039-6050, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32582916

RESUMO

Protocadherin-19 (PCDH19) is a calcium dependent cell-adhesion molecule involved in neuronal circuit formation with prevalent expression in the limbic structures. PCDH19-gene mutations cause a developmental encephalopathy with prominent infantile onset focal seizures, variably associated with intellectual disability and autistic features. Diagnostic neuroimaging is usually unrevealing. We used quantitative MRI to investigate the cortex and white matter in a group of 20 PCDH19-mutated patients. By a statistical comparison between quantitative features in PCDH19 brains and in a group of age and sex matched controls, we found that patients exhibited bilateral reductions of local gyrification index (lGI) in limbic cortical areas, including the parahippocampal and entorhinal cortex and the fusiform and lingual gyri, and altered diffusivity features in the underlying white matter. In patients with an earlier onset of seizures, worse psychiatric manifestations and cognitive impairment, reductions of lGI and diffusivity abnormalities in the limbic areas were more pronounced. Developmental abnormalities involving the limbic structures likely represent a measurable anatomic counterpart of the reduced contribution of the PCDH19 protein to local cortical folding and white matter organization and are functionally reflected in the phenotypic features involving cognitive and communicative skills as well as local epileptogenesis.


Assuntos
Sistema Límbico/fisiopatologia , Protocaderinas/genética , Espasmos Infantis/genética , Espasmos Infantis/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Mutação , Substância Branca/fisiopatologia , Adulto Jovem
14.
Curr Opin Neurol ; 33(2): 179-184, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32049741

RESUMO

PURPOSE OF REVIEW: To review the evolution of the concept of epileptic encephalopathy during the course of past years and analyze how the current definition might impact on both clinical practice and research. RECENT FINDINGS: Developmental delay in children with epilepsy could be the expression of the cause, consequence of intense epileptiform activity (seizures and EEG abnormalities), or because of the combination of both factors. Therefore, the current International League Against Epilepsy classification identified three electroclinical entities that are those of developmental encephalopathy, epileptic encephalopathy, and developmental and epileptic encephalopathy (DEE). Many biological pathways could be involved in the pathogenesis of DEEs. DNA repair, transcriptional regulation, axon myelination, metabolite and ion transport, and peroxisomal function could all be involved in DEE. Also, epilepsy and epileptiform discharges might impact on cognition via several mechanisms, although they are not fully understood. SUMMARY: The correct and early identification of cause in DEE might increase the chances of a targeted treatment regimen. Interfering with neurobiological processes of the disease will be the most successful way in order to improve both the cognitive disturbances and epilepsy that are the key features of DEE.


Assuntos
Encefalopatias/patologia , Epilepsia/patologia , Adulto , Encefalopatias/etiologia , Encefalopatias/psicologia , Encefalopatias/terapia , Criança , Epilepsia/complicações , Epilepsia/psicologia , Epilepsia/terapia , Humanos
15.
Ann Neurol ; 86(6): 821-831, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31618474

RESUMO

OBJECTIVE: Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe developmental and epileptic encephalopathies. We delineate the genetic causes and genotype-phenotype correlations of a large EIMFS cohort. METHODS: Phenotypic and molecular data were analyzed on patients recruited through an international collaborative study. RESULTS: We ascertained 135 patients from 128 unrelated families. Ninety-three of 135 (69%) had causative variants (42/55 previously reported) across 23 genes, including 9 novel EIMFS genes: de novo dominant GABRA1, GABRB1, ATP1A3; X-linked CDKL5, PIGA; and recessive ITPA, AIMP1, KARS, WWOX. The most frequently implicated genes were KCNT1 (36/135, 27%) and SCN2A (10/135, 7%). Mosaicism occurred in 2 probands (SCN2A, GABRB3) and 3 unaffected mothers (KCNT1). Median age at seizure onset was 4 weeks, with earlier onset in the SCN2A, KCNQ2, and BRAT1 groups. Epileptic spasms occurred in 22% patients. A total of 127 patients had severe to profound developmental impairment. All but 7 patients had ongoing seizures. Additional features included microcephaly, movement disorders, spasticity, and scoliosis. Mortality occurred in 33% at median age 2 years 7 months. INTERPRETATION: We identified a genetic cause in 69% of patients with EIMFS. We highlight the genetic heterogeneity of EIMFS with 9 newly implicated genes, bringing the total number to 33. Mosaicism was observed in probands and parents, carrying critical implications for recurrence risk. EIMFS pathophysiology involves diverse molecular processes from gene and protein regulation to ion channel function and solute trafficking. ANN NEUROL 2019;86:821-831.


Assuntos
Predisposição Genética para Doença/genética , Convulsões/diagnóstico , Convulsões/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Convulsões/fisiopatologia , Espasmos Infantis/fisiopatologia
16.
Epilepsia ; 61(11): 2405-2414, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32945537

RESUMO

OBJECTIVE: Dravet syndrome (DS) is a drug-resistant, infantile onset epilepsy syndrome with multiple seizure types and developmental delay. In recently published randomized controlled trials, fenfluramine (FFA) proved to be safe and effective in DS. METHODS: DS patients were treated with FFA in the Zogenix Early Access Program at four Italian pediatric epilepsy centers. FFA was administered as add-on, twice daily at an initial dose of 0.2 mg/kg/d up to 0.7 mg/kg/d. Seizures were recorded in a diary. Adverse events and cardiac safety (with Doppler echocardiography) were investigated every 3 to 6 months. RESULTS: Fifty-two patients were enrolled, with a median age of 8.6 years (interquartile range [IQR] = 4.1-13.9). Forty-five (86.5%) patients completed the efficacy analysis. The median follow-up was 9.0 months (IQR = 3.2-9.5). At last follow-up visit, there was a 77.4% median reduction in convulsive seizures. Thirty-two patients (71.1%) had a ≥50% reduction of convulsive seizures, 24 (53.3%) had a ≥75% reduction, and five (11.1%) were seizure-free. The most common adverse event was decreased appetite (n = 7, 13.4%). No echocardiographic signs of cardiac valvulopathy or pulmonary hypertension were observed. There was no correlation between type of genetic variants and response to FFA. SIGNIFICANCE: In this real-world study, FFA provided a clinically meaningful reduction in convulsive seizure frequency in the majority of patients with DS and was well tolerated.


Assuntos
Epilepsias Mioclônicas/tratamento farmacológico , Fenfluramina/administração & dosagem , Convulsões/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Adolescente , Adulto , Anorexia/induzido quimicamente , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Criança , Pré-Escolar , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/fisiopatologia , Feminino , Fenfluramina/efeitos adversos , Seguimentos , Humanos , Masculino , Estudos Prospectivos , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Resultado do Tratamento , Adulto Jovem
17.
Epilepsia ; 61(7): e71-e78, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645220

RESUMO

Fibroblast growth-factor homologous factor (FHF1) gene variants have recently been associated with developmental and epileptic encephalopathy (DEE). FHF1 encodes a cytosolic protein that modulates neuronal sodium channel gating. We aim to refine the electroclinical phenotypic spectrum of patients with pathogenic FHF1 variants. We retrospectively collected clinical, genetic, neurophysiologic, and neuroimaging data of 17 patients with FHF1-DEE. Sixteen patients had recurrent heterozygous FHF1 missense variants: 14 had the recurrent p.Arg114His variant and two had a novel likely pathogenic variant p.Gly112Ser. The p.Arg114His variant is associated with an earlier onset and more severe phenotype. One patient carried a chromosomal microduplication involving FHF1. Twelve patients carried a de novo variant, five (29.5%) inherited from parents with gonadic or somatic mosaicism. Seizure onset was between 1 day and 41 months; in 76.5% it was within 30 days. Tonic seizures were the most frequent seizure type. Twelve patients (70.6%) had drug-resistant epilepsy, 14 (82.3%) intellectual disability, and 11 (64.7%) behavioral disturbances. Brain magnetic resonance imaging (MRI) showed mild cerebral and/or cerebellar atrophy in nine patients (52.9%). Overall, our findings expand and refine the clinical, EEG, and imaging phenotype of patients with FHF1-DEE, which is characterized by early onset epilepsy with tonic seizures, associated with moderate to severe ID and psychiatric features.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Fatores de Crescimento de Fibroblastos/genética , Deficiência Intelectual/genética , Fenótipo , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encefalopatias/diagnóstico por imagem , Encefalopatias/fisiopatologia , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Feminino , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Estudos Retrospectivos , Adulto Jovem
18.
Epilepsy Behav ; 113: 107527, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33242768

RESUMO

The recent COVID-19 pandemic has disrupted care systems around the world. We assessed how the COVID-19 pandemic affected children with epilepsy in Italy, where lockdown measures were applied from March 8 to May 4, 2020. We compiled an Italian-language online survey on changes to healthcare and views on telehealth. Invitations were sent to 6631 contacts of all patients diagnosed with epilepsy within the last 5 years at the BambinoGesù Children's Hospital in Rome. Of the 3321 responses received, 55.6% of patients were seizure-free for at least 1 year before the COVID-19-related lockdown, 74.4% used anti-seizure medications (ASMs), and 59.7% had intellectual disability. Only 10 patients (0.4%) became infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Seizure frequency remained stable for most patients during the lockdown period (increased in 13.2%; decreased in 20.3%), and seizure duration, use of rescue medications, and adherence to treatment were unchanged. Comorbidities were more affected (behavioral problems worsened in 35.8%; sleep disorder worsened in 17.0%). Visits were canceled/postponed for 41.0%, but 25.1% had remote consultation during the lockdown period (93.9% were satisfied). Most responders (67.2%) considered continued remote consultations advantageous. Our responses support that patients/caregivers are willing to embrace telemedicine for some scenarios.


Assuntos
COVID-19/psicologia , Cuidadores/psicologia , Cuidadores/tendências , Epilepsia/psicologia , Telemedicina/tendências , Adolescente , COVID-19/epidemiologia , COVID-19/terapia , Criança , Pré-Escolar , Epilepsia/epidemiologia , Epilepsia/terapia , Feminino , Humanos , Lactente , Recém-Nascido , Itália/epidemiologia , Masculino , Pandemias , Inquéritos e Questionários
19.
Epilepsy Behav ; 108: 107097, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402703

RESUMO

Seizure threshold 2 (SZT2) gene mutations have been associated with developmental and epileptic encephalopathies (DEEs). Following a literature review, we collected 22 patients and identified the main clinical features related to SZT2 variants that are epilepsy with onset within the first years of life, intellectual disability (ID), macrocephaly with dysmorphic facial features, corpus callosum (CC) shape abnormalities, and cortical migration disorders. Moreover, we identified the c.7825T>G homozygous missense variant in SZT2 in two female siblings presenting with focal seizures, mild-moderate ID, behavioral disturbances, and facial dysmorphisms. Interictal Electroencephalogram (EEG) and ictal EEG were both informative and revealed, respectively, temporal bilateral asynchronous slow and epileptiform abnormalities and a focal onset in both of them. Neuroimaging study revealed a thick and abnormally shaped CC. Seizure threshold 2 has been identified as a component of the KICSTOR complex, a newly recognized protein complex involved in the mammalian target of rapamycin (mTOR) pathway. mTOR signaling dysregulation represents common pathogenetic mechanisms that can explain the presence of both epileptogenesis and ID. Even if few cases had been reported, a new clinical phenotype is emerging, and recent hypothesis of hyperactivation of mTORC1 signaling might also open to targeted treatments, challenging an early diagnosis as of paramount importance.


Assuntos
Síndromes Epilépticas/genética , Variação Genética/genética , Genômica/métodos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Criança , Pré-Escolar , Eletroencefalografia/métodos , Síndromes Epilépticas/complicações , Síndromes Epilépticas/diagnóstico , Feminino , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Linhagem
20.
Clin Genet ; 95(4): 525-531, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30684285

RESUMO

Whole exome sequencing (WES) has led to the understanding of the molecular events affecting neurodevelopment in an extremely diverse clinical context, including diseases with intellectual disability (ID) associated with variable central nervous system (CNS) malformations, and developmental and epileptic encephalopathies (DEEs). Recently, PACS2 mutations have been causally linked to a DEE with cerebellar dysgenesis and facial dysmorphism. All known patients presented with a recurrent de novo missense mutation, c.625G>A (p.Glu209Lys). Here, we report on a 7-year-old boy with DEE, cerebellar dysgenesis, facial dysmorphism and postnatal growth delay, apparently not fitting with any recognized disorder. WES disclosed a de novo novel missense PACS2 variant, c.631G>A (p.Glu211Lys), as the molecular cause of this complex phenotype. We provide a detailed clinical characterization of this patient, and analyse the available clinical data of individuals with PACS2 mutations to delineate more accurately the clinical spectrum associated with this recently described syndrome. Our study expands the clinical and molecular spectrum of PACS2 mutations. Overview of the available clinical data allow to delineate the condition associated with PACS2 mutations as a variable trait, in which the key features are represented by moderate to severe ID, cerebellar dysgenesis and other CNS malformations, reduced growth, and facial dysmorphism.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Fenótipo , Proteínas de Transporte Vesicular/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Fácies , Estudos de Associação Genética/métodos , Loci Gênicos , Humanos , Imageamento por Ressonância Magnética , Masculino , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA