Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nat Chem Biol ; 18(2): 124-133, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952934

RESUMO

More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways-DNA methylation, histone acetylation and methylation-are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cromatina/metabolismo , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/metabolismo , Humanos , Neoplasias/genética
2.
J Biol Chem ; 296: 100349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524394

RESUMO

The histone methyltransferase EZH2 has been the target of numerous small-molecule inhibitor discovery efforts over the last 10+ years. Emerging clinical data have provided early evidence for single agent activity with acceptable safety profiles for first-generation inhibitors. We have developed kinetic methodologies for studying EZH2-inhibitor-binding kinetics that have allowed us to identify a unique structural modification that results in significant increases in the drug-target residence times of all EZH2 inhibitor scaffolds we have studied. The unexpected residence time enhancement bestowed by this modification has enabled us to create a series of second-generation EZH2 inhibitors with sub-pM binding affinities. We provide both biophysical evidence validating this sub-pM potency and biological evidence demonstrating the utility and relevance of such high-affinity interactions with EZH2.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Descoberta de Drogas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Células HeLa , Humanos , Camundongos SCID , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Mol Cell ; 42(4): 438-50, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21596310

RESUMO

We have identified human MBT domain-containing protein L3MBTL2 as an integral component of a protein complex that we termed Polycomb repressive complex 1 (PRC1)-like 4 (PRC1L4), given the copresence of PcG proteins RING1, RING2, and PCGF6/MBLR. PRC1L4 also contained E2F6 and CBX3/HP1γ, known to function in transcriptional repression. PRC1L4-mediated repression necessitated L3MBTL2 that compacted chromatin in a histone modification-independent manner. Genome-wide location analyses identified several hundred genes simultaneously bound by L3MBTL2 and E2F6, preferentially around transcriptional start sites that exhibited little overlap with those targeted by other E2Fs or by L3MBTL1, another MBT domain-containing protein that interacts with RB1. L3MBTL2-specific RNAi resulted in increased expression of target genes that exhibited a significant reduction in H2A lysine 119 monoubiquitination. Our findings highlight a PcG/MBT collaboration that attains repressive chromatin without entailing histone lysine methylation marks.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Células HEK293 , Histonas/genética , Humanos , Proteínas Nucleares/genética , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Fatores de Transcrição/genética
4.
Nat Chem Biol ; 12(7): 531-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214401

RESUMO

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 27(13): 2974-2981, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512031

RESUMO

A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C-C bond between the pyrrolidine and pyridine. Replacing this with a C-N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (LogD) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5mg/kg resulted in unbound Cmax ∼2-fold of its cell potency (PC9 H3K4Me3 0.96µM), meeting our criteria for an in vivo tool compound from a new scaffold.


Assuntos
Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Pirazóis/farmacologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/administração & dosagem , Pirazóis/química , Ratos , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
6.
Mol Cell Proteomics ; 14(4): 1148-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680960

RESUMO

Mass spectrometry is a powerful alternative to antibody-based methods for the analysis of histone post-translational modifications (marks). A key development in this approach was the deliberate propionylation of histones to improve sequence coverage across the lysine-rich and hydrophilic tails that bear most modifications. Several marks continue to be problematic however, particularly di- and tri-methylated lysine 4 of histone H3 which we found to be subject to substantial and selective losses during sample preparation and liquid chromatography-mass spectrometry. We developed a new method employing a "one-pot" hybrid chemical derivatization of histones, whereby an initial conversion of free lysines to their propionylated forms under mild aqueous conditions is followed by trypsin digestion and labeling of new peptide N termini with phenyl isocyanate. High resolution mass spectrometry was used to collect qualitative and quantitative data, and a novel web-based software application (Fishtones) was developed for viewing and quantifying histone marks in the resulting data sets. Recoveries of 53 methyl, acetyl, and phosphoryl marks on histone H3.1 were improved by an average of threefold overall, and over 50-fold for H3K4 di- and tri-methyl marks. The power of this workflow for epigenetic research and drug discovery was demonstrated by measuring quantitative changes in H3K4 trimethylation induced by small molecule inhibitors of lysine demethylases and siRNA knockdown of epigenetic modifiers ASH2L and WDR5.


Assuntos
Histonas/metabolismo , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Coloração e Rotulagem/métodos , Cromatografia Líquida , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Histona Desmetilases/metabolismo , Humanos , Lisina/metabolismo , Metilação , Peptídeos/metabolismo , Propionatos/metabolismo , RNA Interferente Pequeno/metabolismo , Padrões de Referência , Tripsina/metabolismo
7.
Bioorg Med Chem Lett ; 26(16): 4036-41, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27406798

RESUMO

Starting with a lead [1,5-a]pyrimidin-7(4H)-one-containing molecule (1), we generated potent, selective and orally bioavailable KDM5 inhibitors. Using structure- and property-based approaches, we designed 48 with improved cell potency (PC9 H3K4Me3 EC50=0.34µM). Furthermore, 48 maintained suitable physiochemical properties and displayed an excellent pharmacokinetic (PK) profile in mice. When dosed orally in mice at 50mg/kg twice a day (BID), 48 showed an unbound maximal plasma concentration (Cmax) >15-fold over its cell EC50, thereby providing a robust chemical probe for studying KDM5 biological functions in vivo.


Assuntos
Pirazóis/química , Pirimidinonas/química , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Administração Oral , Animais , Sítios de Ligação , Cristalografia por Raios X , Feminino , Meia-Vida , Histonas/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Pirazóis/síntese química , Pirazóis/farmacocinética , Pirimidinonas/sangue , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Ratos , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 26(18): 4492-4496, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27499454

RESUMO

Features from a high throughput screening (HTS) hit and a previously reported scaffold were combined to generate 1,7-naphthyridones as novel KDM5 enzyme inhibitors with nanomolar potencies. These molecules exhibited high selectivity over the related KDM4C and KDM2B isoforms. An X-ray co-crystal structure of a representative molecule bound to KDM5A showed that these inhibitors are competitive with the co-substrate (2-oxoglutarate or 2-OG).


Assuntos
Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Naftiridinas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Cristalografia por Raios X , Cães , Desenho de Fármacos , Humanos , Células Madin Darby de Rim Canino , Naftiridinas/química , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 26(17): 4350-4, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476424

RESUMO

This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Camundongos , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Ratos
10.
Bioorg Med Chem Lett ; 25(17): 3644-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26189078

RESUMO

The discovery and optimization of a series of small molecule EZH2 inhibitors is described. Starting from dimethylpyridone HTS hit (2), a series of indole-based EZH2 inhibitors were identified. Biochemical potency and microsomal stability were optimized during these studies and afforded compound 22. This compound demonstrates nanomolar levels of biochemical potency (IC50=0.002 µM), cellular potency (EC50=0.080 µM), and afforded tumor regression when dosed (200 mpk SC BID) in an EZH2 dependent tumor xenograft model.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Indóis/química , Complexo Repressor Polycomb 2/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Desenho de Fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste , Células HeLa/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Camundongos , Terapia de Alvo Molecular/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
11.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559135

RESUMO

A subgroup of castration-resistant prostate cancer (CRPC) aberrantly expresses a gastrointestinal (GI) transcriptome governed by two GI-lineage-restricted transcription factors, HNF1A and HNF4G. In this study, we found that expression of GI transcriptome in CRPC correlates with adverse clinical outcomes to androgen receptor signaling inhibitor treatment and shorter overall survival. Bromo- and extra-terminal domain inhibitors (BETi) downregulated HNF1A, HNF4G, and the GI transcriptome in multiple CRPC models, including cell lines, patient-derived organoids, and patient-derived xenografts, while AR and the androgen-dependent transcriptome were largely spared. Accordingly, BETi selectively inhibited growth of GI transcriptome-positive preclinical models of prostate cancer. Mechanistically, BETi inhibited BRD4 binding at enhancers globally, including both AR and HNF4G bound enhancers while gene expression was selectively perturbed. Restoration of HNF4G expression in the presence of BETi rescued target gene expression without rescuing BRD4 binding. This suggests that inhibition of master transcription factors expression underlies the selective transcriptional effects of BETi. SIGNIFICANCE: GI transcriptome expression in CRPC is regulated by the HNF1A-HNF4G-BRD4 axis and correlates with worse clinical outcomes. Accordingly, BET inhibitors significantly reduce tumor cell growth in multiple GI-transcriptome-positive preclinical models of CRPC. Our studies point that expression of GI transcriptome could serve as a predictive biomarker to BETi therapy response.

12.
Cancer Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833522

RESUMO

Recurrent somatic mutations in the BAF chromatin remodeling complex subunit ARID1A occur frequently in advanced urothelial carcinoma, endometrial cancers, and ovarian clear cell carcinoma, creating an alternative chromatin state that may be exploited therapeutically. The histone methyltransferase EZH2 has previously been identified as targetable vulnerability in the context of ARID1A mutations. Here, we describe the discovery of tulmimetostat, an orally available, clinical stage EZH2 inhibitor and elucidate its therapeutic potential for treating ARID1A mutant tumors. Tulmimetostat administration achieved efficacy in multiple ARID1A mutant bladder, ovarian, and endometrial tumor models and improved cisplatin response in chemotherapy-resistant models. Consistent with its comprehensive and durable level of target coverage, tulmimetostat demonstrated greater efficacy than other PRC2-targeted inhibitors at comparable or lower exposures in a bladder cancer xenograft mouse model. Tulmimetostat mediated extensive changes in gene expression in addition to a profound reduction in global H3K27me3 levels in tumors. Phase I clinical pharmacokinetic and pharmacodynamic data indicated that tulmimetostat exhibits durable exposure and profound target engagement. Importantly, a tulmimetostat controlled gene expression signature identified in whole blood from a cohort of 32 cancer patients correlated with tulmimetostat exposure, representing a pharmacodynamic marker for the assessment of target coverage for PRC2-targeted agents in the clinic. Collectively, this data suggests that tulmimetostat has the potential to achieve clinical benefit in solid tumors as a monotherapy but also in combination with chemotherapeutic agents and may be beneficial in various indications with recurrent ARID1A mutations.

14.
Methods Mol Biol ; 2529: 477-490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733027

RESUMO

Potent and highly selective small-molecule inhibitors are needed to unravel the biological complexities of histone methyltransferases and to reveal their therapeutic potential. A prerequisite to developing these inhibitors is the identification of validated chemical matter for initiating a medicinal chemistry campaign. For the most part, finding these initial starting points occurs through screening of large, unbiased compound libraries. The size and nature of these libraries, coupled with the complexities of the bisubstrate utilizing histone methyltransferases, necessitates that the primary screen and subsequent hit triage be carefully considered.In this chapter, using EZH2 as a representative example, we describe a screening and hit triage campaign that identified validated chemical matter allowing initiation of medicinal chemistry studies. Moreover, we discuss a cell-based assay to support lead identification and optimization. The approach described here entailing a mixture of biochemical, biophysical and cell-based assays should be applicable to identifying validated starting points for other histone methyltransferases.


Assuntos
Inibidores Enzimáticos , Metiltransferases , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Metiltransferases
15.
Cancer Res Commun ; 2(8): 795-805, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36923307

RESUMO

Purpose: NF-κB, a transcription factor essential for inflammatory responses, is constitutively activated in many lymphomas. In preclinical studies, pelabresib (CPI-0610), an investigational (BET) bromodomain inhibitor, downregulated NF-κB signaling and demonstrated antitumor activity in vitro. Here we report the safety, pharmacokinetics, pharmacodynamics, and preliminary clinical activity from the first-in-human phase I study of pelabresib in patients with relapsed/refractory lymphomas (NCT01949883). Experimental Design: Sixty-four patients with relapsed/refractory lymphoma (median of 4 prior lines of therapy) were treated with either capsule (6, 12, 24, 48, 80, 120, 170, 230, 300 mg) or tablet (125, 225 mg) doses of pelabresib orally once daily on a 14 days on, 7 days off schedule. Results: The MTD was determined as the 225 mg tablet daily. The most frequent adverse events were fatigue, nausea, and decreased appetite. Thrombocytopenia, a class effect for all BET inhibitors, was dose-dependent, reversible, and noncumulative. Pelabresib exhibited dose-proportional increases in systemic exposure, rapid absorption, and a half-life of approximately 15 hours (supporting once daily dosing). The bioavailability of the tablet formulation was 60% greater than the capsules. Pelabresib suppressed IL8 and CCR1 mRNA at doses above 120 and 170 mg, respectively. Four patients (6.2%) had an objective response (2 complete response and 2 partial response) and 5 patients had prolonged stable disease. Conclusions/Discussion: Pelabresib is capable of BET target gene suppression in an exposure-dependent manner with an acceptable safety profile leading to the recommended phase II dose of the 125 mg tablet once daily. Significance: BET proteins inhibition can potentially modify the pathogenic pathways which contribute to many diseases including malignancies. Pelabresib (CPI-0610), a potent and selective small molecule BET proteins inhibitor, has a MTD of 225 mg once daily for 14 days with a 7-day break, clear pharmacokinetic/pharmacodynamic relationship, and manageable clinical safety profile. These findings are part of the foundation for the ongoing pivotal study of pelabresib in patients with myelofibrosis.


Assuntos
Antineoplásicos , Linfoma , Humanos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Linfoma/tratamento farmacológico , NF-kappa B/metabolismo , Comprimidos
16.
J Biol Chem ; 284(49): 34283-95, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19808676

RESUMO

The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target.


Assuntos
Histona-Lisina N-Metiltransferase/química , Animais , Linhagem Celular Tumoral , Cromatina/química , DNA/química , Vetores Genéticos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Lisina/química , Espectrometria de Massas/métodos , Nucleossomos/química , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Xenopus laevis
17.
ACS Med Chem Lett ; 11(6): 1205-1212, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551002

RESUMO

Histone methyltransferase EZH2, which is the catalytic subunit of the PRC2 complex, catalyzes the methylation of histone H3K27-a transcriptionally repressive post-translational modification (PTM). EZH2 is commonly mutated in hematologic malignancies and frequently overexpressed in solid tumors, where its expression level often correlates with poor prognosis. First generation EZH2 inhibitors are beginning to show clinical benefit, and we believe that a second generation EZH2 inhibitor could further build upon this foundation to fully realize the therapeutic potential of EZH2 inhibition. During our medicinal chemistry campaign, we identified 4-thiomethyl pyridone as a key modification that led to significantly increased potency and prolonged residence time. Leveraging this finding, we optimized a series of EZH2 inhibitors, with enhanced antitumor activity and improved physiochemical properties, which have the potential to expand the clinical use of EZH2 inhibition.

19.
Nat Cell Biol ; 22(5): 603-615, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284543

RESUMO

Merkel cell carcinoma (MCC)-a neuroendocrine cancer of the skin-is caused by the integration of Merkel cell polyomavirus and persistent expression of large T antigen and small T antigen. We report that small T antigen in complex with MYCL and the EP400 complex activates the expression of LSD1 (KDM1A), RCOR2 and INSM1 to repress gene expression by the lineage transcription factor ATOH1. LSD1 inhibition reduces the growth of MCC in vitro and in vivo. Through a forward-genetics CRISPR-Cas9 screen, we identified an antagonistic relationship between LSD1 and the non-canonical BAF (ncBAF) chromatin remodelling complex. Changes in gene expression and chromatin accessibility caused by LSD1 inhibition were partially rescued by BRD9 inhibition, revealing that LSD1 and ncBAF antagonistically regulate an overlapping set of genes. Our work provides mechanistic insight into the dependence of MCC on LSD1 and a tumour suppressor role for ncBAF in cancer.

20.
ACS Med Chem Lett ; 11(6): 1213-1220, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551003

RESUMO

Leveraging the catalytic machinery of LSD1 (KDM1A), a series of covalent styrenylcyclopropane LSD1 inhibitors were identified. These inhibitors represent a new class of mechanism-based inhibitors that target and covalently label the FAD cofactor of LSD1. The series was rapidly progressed to potent biochemical and cellular LSD1 inhibitors with good physical properties. This effort resulted in the identification of 34, a highly potent (<4 nM biochemical, 2 nM cell, and 1 nM GI50), and selective LSD1 inhibitor. In-depth kinetic profiling of 34 confirmed its covalent mechanism of action, validated the styrenylcyclopropane as an FAD-directed warhead, and demonstrated that the potency of this inhibitor is driven by improved non-covalent binding (K I). 34 demonstrated robust cell-killing activity in a panel of AML cell lines and robust antitumor activity in a Kasumi-1 xenograft model of AML when dosed orally at 1.5 mg/kg once daily.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA