Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biophys J ; 122(18): 3678-3689, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37218133

RESUMO

Directed transport of cellular components is often dependent on the processive movements of cytoskeletal motors. Myosin 2 motors predominantly engage actin filaments of opposing orientation to drive contractile events and are therefore not traditionally viewed as processive. However, recent in vitro experiments with purified nonmuscle myosin 2 (NM2) demonstrated myosin 2 filaments could move processively. Here, we establish processivity as a cellular property of NM2. Processive runs in central nervous system-derived CAD cells are most apparent on bundled actin in protrusions that terminate at the leading edge. We find that processive velocities in vivo are consistent with in vitro measurements. NM2 makes these processive runs in its filamentous form against lamellipodia retrograde flow, though anterograde movement can still occur in the absence of actin dynamics. Comparing the processivity of NM2 isoforms, we find that NM2A moves slightly faster than NM2B. Finally, we demonstrate that this is not a cell-specific property, as we observe processive-like movements of NM2 in the lamella and subnuclear stress fibers of fibroblasts. Collectively, these observations further broaden NM2 functionality and the biological processes in which the already ubiquitous motor can contribute.


Assuntos
Actinas , Citoesqueleto , Actinas/fisiologia , Citoesqueleto de Actina , Proteínas do Citoesqueleto , Miosina Tipo II
2.
FASEB J ; 36(7): e22318, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648586

RESUMO

Laminins (LMs) are essential components of all basement membranes where they regulate an extensive array of tissue functions. Alternative splicing from the laminin α3 gene produces a non-laminin but netrin-like protein, Laminin N terminus α31 (LaNt α31). LaNt α31 is widely expressed in intact tissue and is upregulated in epithelial cancers and during wound healing. In vitro functional studies have shown that LaNt α31 can influence numerous aspects of epithelial cell behavior via modifying matrix organization, suggesting a new model of laminin auto-regulation. However, the function of this protein has not been established in vivo. Here, a mouse transgenic line was generated using the ubiquitin C promoter to drive inducible expression of LaNt α31. When expression was induced at embryonic day 15.5, LaNt α31 transgenic animals were not viable at birth, exhibiting localized regions of erythema. Histologically, the most striking defect was widespread evidence of extravascular bleeding across multiple tissues. Additionally, LaNt α31 transgene expressing animals exhibited kidney epithelial detachment, tubular dilation, disruption of the epidermal basal cell layer and of the hair follicle outer root sheath, and ~50% reduction of cell numbers in the liver, associated with depletion of hematopoietic erythrocytic foci. These findings provide the first in vivo evidence that LaNt α31 can influence tissue morphogenesis.


Assuntos
Folículo Piloso , Laminina , Animais , Membrana Basal/metabolismo , Células Epiteliais/metabolismo , Folículo Piloso/metabolismo , Laminina/genética , Laminina/metabolismo , Camundongos , Camundongos Transgênicos
3.
bioRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865321

RESUMO

Directed transport of cellular components is often dependent on the processive movements of cytoskeletal motors. Myosin 2 motors predominantly engage actin filaments of opposing orientation to drive contractile events, and are therefore not traditionally viewed as processive. However, recent in vitro experiments with purified non-muscle myosin 2 (NM2) demonstrated myosin 2 filaments could move processively. Here, we establish processivity as a cellular property of NM2. Processive runs in central nervous system-derived CAD cells are most apparent as processive movements on bundled actin in protrusions that terminate at the leading edge. We find that processive velocities in vivo are consistent with in vitro measurements. NM2 makes these processive runs in its filamentous form against lamellipodia retrograde flow, though anterograde movement can still occur in the absence of actin dynamics. Comparing the processivity of NM2 isoforms, we find that NM2A moves slightly faster than NM2B. Finally, we demonstrate that this is not a cell-specific property, as we observe processive-like movements of NM2 in the lamella and subnuclear stress fibers of fibroblasts. Collectively, these observations further broaden NM2 functionality and the biological processes in which the already ubiquitous motor can contribute.

4.
Elife ; 122023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724949

RESUMO

Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas the Mfn2-/- cells maintain a circular shape. Increased cytosolic Ca2+ resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and endoplasmic reticulum to close vicinity. Elevated cytosolic Ca2+ activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and myosin light-chain kinase, causing an overactivation of nonmuscle myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.


Assuntos
Actinas , Fibroblastos , Animais , Humanos , Camundongos , Actinas/metabolismo , Fibroblastos/metabolismo , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo
5.
PLoS One ; 17(3): e0264430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35231053

RESUMO

Laminin N-terminus α31 (LaNt α31) is an alternative splice isoform derived from the laminin α3 gene. The LaNt α31 protein is enriched around the terminal duct lobular units in normal breast tissue. In the skin and cornea the protein influences epithelial cell migration and tissue remodelling. However, LaNt α31 has never been investigated in a tumour environment. Here we analysed LaNt α31 in invasive ductal carcinoma and determined its contribution to breast carcinoma invasion. LaNt α31 expression and distribution were analysed by immunohistochemistry in human breast tissue biopsy sections and tissue microarrays covering 232 breast cancer samples. This analysis revealed LaNt α31 to be upregulated in 56% of invasive ductal carcinoma specimens compared with matched normal tissue, and further increased in nodal metastasis compared with the tumour mass in 45% of samples. 65.8% of triple negative cases displayed medium to high LaNt α31 expression. To study LaNt α31 function, an adenoviral system was used to induce expression in MCF-7 and MDA-MB-231 cells. 2D cell migration and invasion into collagen hydrogels were not significantly different between LaNt α31 overexpressing cells and control treated cells. However, LaNt α31 overexpression reduced the proliferation rate of MCF-7 and MDA-MB-231 cells. Moreover, LaNt α31 overexpressing MDA-MB-231 cells displayed a striking change in their mode of invasion into laminin-containing Matrigel; changing from multicellular streaming to individual cellular-invasion. In agreement with these results, 66.7% of the tumours with the highest LaNt α31 expression were non-cohesive. Together these findings indicate that breast cancer-associated changes in LaNt α31 expression could contribute to the processes involved in tumour invasion and may represent a new therapeutic target.


Assuntos
Neoplasias da Mama , Carcinoma Ductal , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Imuno-Histoquímica , Laminina/genética , Laminina/metabolismo , Invasividade Neoplásica
6.
Eur J Ophthalmol ; 32(5): 2676-2682, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34889141

RESUMO

PURPOSE: To determine if sex is associated with corneal epithelial wound healing time in patients with persistent corneal epithelial defects (PCEDs). METHODS: Retrospective case series on patients with PCED from November 2014 to January 2019. Records of 127 patients with diagnosis of PCED were reviewed. Patients with an epithelial defect that lasted more than two weeks in the absence of an active corneal infection were included. Main outcome was corneal epithelial wound healing time. RESULTS: 55 patients (29 males) with a mean age of 65.3 ± 16.5 years were included. No difference was found between female and male patients in terms of risk factors, age, treatment strategies or intervals between visits (median of 15 days in females and 12 days in males; p = 0.24). Median duration of the PCED was 51 days (IQR 32-130), with a median number of 5 clinical visits (IQR 4-8). Female patients had significantly longer healing times (p = 0.004) and a corresponding increase in the number of clinical visits (median of 7 visits vs. 5 clinical visits in males, p = 0.012). CONCLUSION: Results from this study suggest female patients with PCED might have a longer corneal epithelial wound healing duration and may therefore require earlier intervention.


Assuntos
Lesões da Córnea , Epitélio Corneano , Cicatrização , Idoso , Idoso de 80 Anos ou mais , Lesões da Córnea/terapia , Epitélio Corneano/lesões , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Distribuição por Sexo , Fatores de Tempo
7.
Front Comput Sci ; 32021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34888522

RESUMO

Measuring the organisation of the cellular cytoskeleton and the surrounding extracellular matrix (ECM) is currently of wide interest as changes in both local and global alignment can highlight alterations in cellular functions and material properties of the extracellular environment. Different approaches have been developed to quantify these structures, typically based on fibre segmentation or on matrix representation and transformation of the image, each with its own advantages and disadvantages. Here we present AFT-Alignment by Fourier Transform, a workflow to quantify the alignment of fibrillar features in microscopy images exploiting 2D Fast Fourier Transforms (FFT). Using pre-existing datasets of cell and ECM images, we demonstrate our approach and compare and contrast this workflow with two other well-known ImageJ algorithms to quantify image feature alignment. These comparisons reveal that AFT has a number of advantages due to its grid-based FFT approach. 1) Flexibility in defining the window and neighbourhood sizes allows for performing a parameter search to determine an optimal length scale to carry out alignment metrics. This approach can thus easily accommodate different image resolutions and biological systems. 2) The length scale of decay in alignment can be extracted by comparing neighbourhood sizes, revealing the overall distance that features remain anisotropic. 3) The approach is ambivalent to the signal source, thus making it applicable for a wide range of imaging modalities and is dependent on fewer input parameters than segmentation methods. 4) Finally, compared to segmentation methods, this algorithm is computationally inexpensive, as high-resolution images can be evaluated in less than a second on a standard desktop computer. This makes it feasible to screen numerous experimental perturbations or examine large images over long length scales. Implementation is made available in both MATLAB and Python for wider accessibility, with example datasets for single images and batch processing. Additionally, we include an approach to automatically search parameters for optimum window and neighbourhood sizes, as well as to measure the decay in alignment over progressively increasing length scales.

8.
PLoS One ; 15(12): e0239889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264294

RESUMO

Laminin N-terminus α31 (LaNt α31) is a netrin-like protein derived from alternative splicing of the laminin α3 gene. Although LaNt α31 has been demonstrated to influence corneal and skin epithelial cell function, its expression has not been investigated beyond these tissues. In this study, we used immunohistochemistry to characterise the distribution of this protein in a wide-array of human tissue sections in comparison to laminin α3. The data revealed widespread LaNt α31 expression. In epithelial tissue, LaNt α31 was present in the basal layer of the epidermis, throughout the epithelium of the digestive tract, and in much of the epithelium of the reproductive system. LaNt α31 was also found throughout the vasculature of most tissues, with enrichment in reticular-like fibres in the extracellular matrix surrounding large vessels. A similar matrix pattern was observed around the terminal ducts in the breast and around the alveolar epithelium in the lung, where basement membrane staining was also evident. Specific enrichment of LaNt α31 was identified in sub-populations of cells of the kidney, liver, pancreas, and spleen, with variations in intensity between different cell types in the collecting ducts and glomeruli of the kidney. Intriguingly, LaNt α31 immunoreactivity was also evident in neurons of the central nervous system, in the cerebellum, cerebral cortex, and spinal cord. Together these findings suggest that LaNt α31 may be functionally relevant in a wider range of tissue contexts than previously anticipated, and the data provides a valuable basis for investigation into this interesting protein.


Assuntos
Rim/metabolismo , Laminina/metabolismo , Fígado/metabolismo , Pâncreas/metabolismo , Baço/metabolismo , Membrana Basal/metabolismo , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Neurônios/metabolismo
9.
Invest Ophthalmol Vis Sci ; 59(10): 4082-4093, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098195

RESUMO

Purpose: Laminin N-terminus (LaNt) α31 is a relatively unstudied protein derived from the laminin α3 gene but structurally similar to netrins. LaNt α31 has, to date, been investigated only in two-dimensional (2D) keratinocyte culture where it influences cell migration and adhesion, processes integral to wound repair. Here we investigated LaNt α31 distribution in ocular surface epithelium, during limbal stem cell activation, and corneal wound healing. Methods: Human, mouse, and pig eyes, ex vivo limbal explant cultures, and alkali burn wounds were processed for immunohistochemistry with antibodies against LaNt α31 along with progenitor cell-associated proteins. LaNt α31 expression was induced via adenoviral transduction into primary epithelial cells isolated from limbal explants, and cell spreading and migration were analyzed using live imaging. Results: LaNt α31 localized to the basal layer of the conjunctival, limbal, and corneal epithelial cells. However, staining was nonuniform with apparent subpopulation enrichment, and some suprabasal reactivity was also noted. This LaNt α31 distribution largely matched that of keratin 15, epidermal growth factor receptor, and transformation-related protein 63α (p63α), and displayed similar increases in expression in activated limbal explants. During active alkali burn wound repair, LaNt α31 displayed increased expression in limbal regions and loss of basal restriction within the cornea. Distribution returned to predominately basal cell restricted once the wounded epithelium matured. Cultured corneal epithelial cells expressing LaNt α31 displayed increased 2D area and reduced migration, suggesting a functional link between this protein and key wound repair activities. Conclusions: These data place LaNt α31 in position to influence laminin-dependent processes including wound repair and stem cell activation.


Assuntos
Lesões da Córnea/metabolismo , Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Laminina/metabolismo , Cicatrização/fisiologia , Animais , Túnica Conjuntiva/química , Túnica Conjuntiva/citologia , Túnica Conjuntiva/metabolismo , Células Epiteliais/química , Epitélio Corneano/química , Epitélio Corneano/citologia , Humanos , Imuno-Histoquímica , Laminina/análise , Limbo da Córnea/química , Limbo da Córnea/citologia , Limbo da Córnea/metabolismo , Camundongos , Suínos
10.
PLoS One ; 12(10): e0185297, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28968413

RESUMO

Application of sunscreen is a widely used mechanism for protecting skin from the harmful effects of UV light. However, protection can only be achieved through effective application, and areas that are routinely missed are likely at increased risk of UV damage. Here we sought to determine if specific areas of the face are missed during routine sunscreen application, and whether provision of public health information is sufficient to improve coverage. To investigate this, 57 participants were imaged with a UV sensitive camera before and after sunscreen application: first visit; minimal pre-instruction, second visit; provided with a public health information statement. Images were scored using a custom automated image analysis process designed to identify areas of high UV reflectance, i.e. missed during sunscreen application, and analysed for 5% significance. Analyses revealed eyelid and periorbital regions to be disproportionately missed during routine sunscreen application (median 14% missed in eyelid region vs 7% in rest of face, p<0.01). Provision of health information caused a significant improvement in coverage to eyelid areas in general however, the medial canthal area was still frequently missed. These data reveal that a public health announcement-type intervention could be effective at improving coverage of high risk areas of the face, however high risk areas are likely to remain unprotected therefore other mechanisms of sun protection should be widely promoted such as UV blocking sunglasses.


Assuntos
Face , Neoplasias Induzidas por Radiação/patologia , Neoplasias Cutâneas/etiologia , Protetores Solares/administração & dosagem , Raios Ultravioleta , Pálpebras/efeitos da radiação , Feminino , Humanos , Masculino , Raios Ultravioleta/efeitos adversos
11.
Adv Wound Care (New Rochelle) ; 4(4): 250-263, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25945287

RESUMO

Significance: Laminins are complex extracellular macromolecules that are major players in the control of a variety of core cell processes, including regulating rates of cell proliferation, differentiation, adhesion, and migration. Laminins, and related extracellular matrix components, have essential roles in tissue homeostasis; however, during wound healing, the same proteins are critical players in re-epithelialization and angiogenesis. Understanding how these proteins influence cell behavior in these different conditions holds great potential in identifying new strategies to enhance normal wound closure or to treat chronic/nonhealing wounds. Recent Advances: Laminin-derived bioactive peptides and, more recently, laminin-peptide conjugated scaffolds, have been designed to improve tissue regeneration after injuries. These peptides have been shown to be effective in decreasing inflammation and granulation tissue, and in promoting re-epithelialization, angiogenesis, and cell migration. Critical Issues: Although there is now a wealth of knowledge concerning laminin form and function, there are still areas of some controversy. These include the relative contribution of two laminin-based adhesive devices (focal contacts and hemidesmosomes) to the re-epithelialization process, the impact and implications of laminin proteolytic processing, and the importance of laminin polymer formation on cell behavior. In addition, the roles in wound healing of the laminin-related proteins, netrins, and LaNts are still to be fully defined. Future Directions: The future of laminin-based therapeutics potentially lies in the bioengineering of specific substrates to support laminin deposition for ex vivo expansion of autologous cells for graft formation and transplantation. Significant recent advances suggest that this goal is within sight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA