RESUMO
Understanding the dynamic structure of intrinsically disordered proteins (IDPs) is important to deciphering their biological functions. Here, we exploit precision entropic elasticity measurements to infer the conformational behavior of a model IDP construct formed from the disordered tail of the neurofilament low molecular weight protein. The IDP construct notably displays a low-force power-law elastic regime, consistent with the Pincus blob model, which allows direct extraction of the Flory exponent, [Formula: see text], from the force-extension relationship. We find [Formula: see text] increases with added denaturant, transitioning from a nearly ideal chain to a swollen chain in a manner quantitatively consistent with measurements of IDP dimensions from other experimental techniques. We suggest that measurements of entropic elasticity could be broadly useful in the study of IDP structure.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , ElasticidadeRESUMO
Understanding the conformational behavior of biopolymers is essential to unlocking knowledge of their biophysical mechanisms and functional roles. Single-molecule force spectroscopy can provide a unique perspective on this by exploiting entropic elasticity to uncover key biopolymer structural parameters. A particularly powerful approach involves the use of magnetic tweezers, which can easily generate lower stretching forces (0.1-20 pN). For forces at the low end of this range, the elastic response of biopolymers is sensitive to excluded volume effects, and they can be described by Pincus blob elasticity model that allow robust extraction of the Flory polymer scaling exponent. Here, we detail protocols for the use of magnetic tweezers for force-extension measurements of intrinsically disordered proteins and peptoids. We also discuss procedures for fitting low-force elastic curves to the predictions of polymer physics models to extract key conformational parameters.