Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059776

RESUMO

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Assuntos
Carcinoma/genética , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Proteoma/genética , Transcriptoma , Acetilação , Animais , Antígenos de Neoplasias/genética , Carcinoma/imunologia , Carcinoma/patologia , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/genética , Retroalimentação Fisiológica , Feminino , Instabilidade Genômica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Repetições de Microssatélites , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Transdução de Sinais
2.
Blood ; 143(26): 2749-2762, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498025

RESUMO

ABSTRACT: Identifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1ß (IL-1ß) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1ß-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors. ASF1B, along with its paralogous protein ASF1A, recruits H3-H4 histones onto the replication fork during S-phase, a process regulated by Tousled-like kinase 1 and 2 (TLKs). Although ASF1s and TLKs are known to be overexpressed in multiple solid tumors and associated with poor prognosis, their functional roles in hematopoiesis and inflammation-driven leukemia remain unexplored. In this study, we identify that ASF1s and TLKs are overexpressed in multiple genetic subtypes of AML. We demonstrate that depletion of ASF1s significantly reduces leukemic cell growth in both in vitro and in vivo models using human cells. Using a murine model, we show that overexpression of ASF1B accelerates leukemia progression. Moreover, Asf1b or Tlk2 deletion delayed leukemia progression, whereas these proteins are dispensable for normal hematopoiesis. Through proteomics and phosphoproteomics analyses, we uncover that the TLK-ASF1 pathway promotes leukemogenesis by affecting the cell cycle and DNA damage pathways. Collectively, our findings identify the TLK1-ASF1 pathway as a novel mediator of inflammatory signaling and a promising therapeutic target for AML treatment across diverse genetic subtypes. Selective inhibition of this pathway offers potential opportunities to intervene effectively, address intratumoral heterogeneity, and ultimately improve clinical outcomes in AML.


Assuntos
Proteínas de Ciclo Celular , Progressão da Doença , Interleucina-1beta , Leucemia Mieloide Aguda , Proteínas Serina-Treonina Quinases , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Humanos , Animais , Camundongos , Interleucina-1beta/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Histonas/metabolismo , Histonas/genética , Linhagem Celular Tumoral , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética
3.
Anal Chem ; 95(33): 12232-12239, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552764

RESUMO

Plant phosphoproteomics provides a global view of phosphorylation-mediated signaling in plants; however, it demands high-throughput methods with sensitive detection and accurate quantification. Despite the widespread use of protein precipitation for removing contaminants and improving sample purity, it limits the sensitivity and throughput of plant phosphoproteomic analysis. The multiple handling steps involved in protein precipitation lead to sample loss and process variability. Herein, we developed an approach based on suspension trapping (S-Trap), termed tandem S-Trap-IMAC (immobilized metal ion affinity chromatography), by integrating an S-Trap micro-column with a Fe-IMAC tip. Compared with a precipitation-based workflow, the tandem S-Trap-IMAC method deepened the coverage of the Arabidopsis (Arabidopsis thaliana) phosphoproteome by more than 30%, with improved number of multiply phosphorylated peptides, quantification accuracy, and short sample processing time. We applied the tandem S-Trap-IMAC method for studying abscisic acid (ABA) signaling in Arabidopsis seedlings. We thus discovered that a significant proportion of the phosphopeptides induced by ABA are multiply phosphorylated peptides, indicating their importance in early ABA signaling and quantified several key phosphorylation sites on core ABA signaling components across four time points. Our results show that the optimized workflow aids high-throughput phosphoproteome profiling of low-input plant samples.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Fluxo de Trabalho , Cromatografia de Afinidade/métodos , Fosfopeptídeos/química , Fosforilação
4.
Cell Commun Signal ; 21(1): 241, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723562

RESUMO

BACKGROUND: Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM). METHODS: We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies. We also performed immobilized-metal affinity chromatography to enrich for phosphopeptides, which allowed us to obtain multi-PTM information from the same samples. RESULTS: By testing the pipeline with RAW 264.7 macrophages treated with bacterial lipopolysaccharide, 7,299, 8,923 and 47,637 acetylated, carbamylated, and phosphorylated peptides were identified, respectively. Our analysis showed that carbamylation occurs on proteins from a variety of functions on sites with similar as well as distinct motifs compared to acetylation. To investigate possible PTM crosstalk, we integrated the carbamylation data with acetylation and phosphorylation data, leading to the identification 1,183 proteins that were modified by all 3 PTMs. Among these proteins, 54 had all 3 PTMs regulated by lipopolysaccharide and were enriched in immune signaling pathways, and in particular, the ubiquitin-proteasome pathway. We found that carbamylation of linear diubiquitin blocks the activity of the anti-inflammatory deubiquitinase OTULIN. CONCLUSIONS: Overall, our data show that anti-acetyllysine antibodies can be used for effective enrichment of carbamylated peptides. Moreover, carbamylation may play a role in PTM crosstalk with acetylation and phosphorylation, and that it is involved in regulating ubiquitination in vitro. Video Abstract.


Assuntos
Lipopolissacarídeos , Proteoma , Lipopolissacarídeos/farmacologia , Processamento de Proteína Pós-Traducional , Fosforilação , Macrófagos
5.
Anal Chem ; 94(27): 9540-9547, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35767427

RESUMO

Despite advances in proteomic technologies, clinical translation of plasma biomarkers remains low, partly due to a major bottleneck between the discovery of candidate biomarkers and costly clinical validation studies. Due to a dearth of multiplexable assays, generally only a few candidate biomarkers are tested, and the validation success rate is accordingly low. Previously, mass spectrometry-based approaches have been used to fill this gap but feature poor quantitative performance and were generally limited to hundreds of proteins. Here, we demonstrate the capability of an internal standard triggered-parallel reaction monitoring (IS-PRM) assay to greatly expand the numbers of candidates that can be tested with improved quantitative performance. The assay couples immunodepletion and fractionation with IS-PRM and was developed and implemented in human plasma to quantify 5176 peptides representing 1314 breast cancer biomarker candidates. Characterization of the IS-PRM assay demonstrated the precision (median % CV of 7.7%), linearity (median R2 > 0.999 over 4 orders of magnitude), and sensitivity (median LLOQ < 1 fmol, approximately) to enable rank-ordering of candidate biomarkers for validation studies. Using three plasma pools from breast cancer patients and three control pools, 893 proteins were quantified, of which 162 candidate biomarkers were verified in at least one of the cancer pools and 22 were verified in all three cancer pools. The assay greatly expands capabilities for quantification of large numbers of proteins and is well suited for prioritization of viable candidate biomarkers.


Assuntos
Neoplasias da Mama , Proteômica , Biomarcadores/análise , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteínas , Proteômica/métodos
6.
Mol Cell Proteomics ; 19(5): 828-838, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32127492

RESUMO

Mass spectrometry (MS)-based proteomics has great potential for overcoming the limitations of antibody-based immunoassays for antibody-independent, comprehensive, and quantitative proteomic analysis of single cells. Indeed, recent advances in nanoscale sample preparation have enabled effective processing of single cells. In particular, the concept of using boosting/carrier channels in isobaric labeling to increase the sensitivity in MS detection has also been increasingly used for quantitative proteomic analysis of small-sized samples including single cells. However, the full potential of such boosting/carrier approaches has not been significantly explored, nor has the resulting quantitation quality been carefully evaluated. Herein, we have further evaluated and optimized our recent boosting to amplify signal with isobaric labeling (BASIL) approach, originally developed for quantifying phosphorylation in small number of cells, for highly effective analysis of proteins in single cells. This improved BASIL (iBASIL) approach enables reliable quantitative single-cell proteomics analysis with greater proteome coverage by carefully controlling the boosting-to-sample ratio (e.g. in general <100×) and optimizing MS automatic gain control (AGC) and ion injection time settings in MS/MS analysis (e.g. 5E5 and 300 ms, respectively, which is significantly higher than that used in typical bulk analysis). By coupling with a nanodroplet-based single cell preparation (nanoPOTS) platform, iBASIL enabled identification of ∼2500 proteins and precise quantification of ∼1500 proteins in the analysis of 104 FACS-isolated single cells, with the resulting protein profiles robustly clustering the cells from three different acute myeloid leukemia cell lines. This study highlights the importance of carefully evaluating and optimizing the boosting ratios and MS data acquisition conditions for achieving robust, comprehensive proteomic analysis of single cells.


Assuntos
Marcação por Isótopo/métodos , Proteômica/métodos , Processamento de Sinais Assistido por Computador , Análise de Célula Única , Automação , Linhagem Celular , Humanos
7.
J Proteome Res ; 20(8): 4193-4202, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34292731

RESUMO

We established a workflow for highly sensitive multiplexed quantitative phosphoproteomics using a nanoscale solid-phase tandem mass tag (TMT) labeling reactor. Phosphopeptides were first enriched by titanium oxide chromatography and then labeled with isobaric TMT reagents in a StageTip packed with hydrophobic polymer-based sorbents. We found that TMT-labeled singly phosphorylated peptides tend to flow through the titanium oxide column. Therefore, TMT labeling should be performed after the enrichment step from tryptic peptides, resulting in the need for microscale reactions with small amounts of phosphopeptides. Using an optimized protocol for tens to hundreds of nanograms of phosphopeptides, we obtained a nearly 10-fold increase in sensitivity compared to the conventional solution-based TMT protocol. We demonstrate that this nanoscale phosphoproteomics protocol works for 50 µg of HeLa proteins treated with selumetinib, and we successfully quantified the selumetinib-regulated phosphorylated sites on a proteome scale. The MS raw data files have been deposited with the ProteomeXchange Consortium via the jPOST partner repository (https://jpostdb.org) with the data set identifier PXD025536.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fosfopeptídeos , Proteoma
8.
J Proteome Res ; 20(9): 4452-4461, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34351778

RESUMO

Recent advances in sample preparation enable label-free mass spectrometry (MS)-based proteome profiling of small numbers of mammalian cells. However, specific devices are often required to downscale sample processing volume from the standard 50-200 µL to sub-µL for effective nanoproteomics, which greatly impedes the implementation of current nanoproteomics methods by the proteomics research community. Herein, we report a facile one-pot nanoproteomics method termed SOPs-MS (surfactant-assisted one-pot sample processing at the standard volume coupled with MS) for convenient robust proteome profiling of 50-1000 mammalian cells. Building upon our recent development of SOPs-MS for label-free single-cell proteomics at a low µL volume, we have systematically evaluated its processing volume at 10-200 µL using 100 human cells. The processing volume of 50 µL that is in the range of volume for standard proteomics sample preparation has been selected for easy sample handling with a benchtop micropipette. SOPs-MS allows for reliable label-free quantification of ∼1200-2700 protein groups from 50 to 1000 MCF10A cells. When applied to small subpopulations of mouse colon crypt cells, SOPs-MS has revealed protein signatures between distinct subpopulation cells with identification of ∼1500-2500 protein groups for each subpopulation. SOPs-MS may pave the way for routine deep proteome profiling of small numbers of cells and low-input samples.


Assuntos
Proteoma , Proteômica , Animais , Cromatografia Líquida , Perfilação da Expressão Gênica , Espectrometria de Massas , Camundongos
9.
Mol Cell Proteomics ; 18(8): 1607-1618, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189691

RESUMO

ER-positive breast tumors represent ∼70% of all breast cancer cases. Although their treatment with endocrine therapies is effective in the adjuvant or recurrent settings, the development of resistance compromises their effectiveness. The binding of estrogen to ERα, a transcription factor, triggers the regulation of the target genes (genomic pathway). Additionally, a cytoplasmic fraction of estrogen-bound ERα activates oncogenic signaling pathways such as PI3K/AKT/mTOR (nongenomic pathway). The upregulation of the estrogenic and the PI3K/AKT/mTOR signaling pathways are frequently associated with a poor outcome. To better characterize the connection between these two pathways, we performed a phosphoproteome analysis of ER-positive MCF7 breast cancer cells treated with estrogen or estrogen and the mTORC1 inhibitor rapamycin. Many proteins were identified as estrogen-regulated mTORC1 targets and among them, DEPTOR was selected for further characterization. DEPTOR binds to mTOR and inhibits the kinase activity of both mTOR complexes mTORC1 and mTORC2, but mitogen-activated mTOR promotes phosphorylation-mediated DEPTOR degradation. Although estrogen enhances the phosphorylation of DEPTOR by mTORC1, DEPTOR levels increase in estrogen-stimulated cells. We demonstrated that DEPTOR accumulation is the result of estrogen-ERα-mediated transcriptional upregulation of DEPTOR expression. Consequently, the elevated levels of DEPTOR partially counterbalance the estrogen-induced activation of mTORC1 and mTORC2. These results underscore the critical role of estrogen-ERα as a modulator of the PI3K/AKT/mTOR signaling pathway in ER-positive breast cancer cells. Additionally, these studies provide evidence supporting the use of dual PI3K/mTOR or dual mTORC1/2 inhibitors in combination with endocrine therapies as a first-line treatment option for the patients with ER-positive advanced breast cancer.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Estrogênios/farmacologia , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Fosforilação , Proteoma , Sirolimo/farmacologia
10.
Anal Chem ; 92(15): 10588-10596, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32639140

RESUMO

Single-cell proteomics can provide critical biological insight into the cellular heterogeneity that is masked by bulk-scale analysis. We have developed a nanoPOTS (nanodroplet processing in one pot for trace samples) platform and demonstrated its broad applicability for single-cell proteomics. However, because of nanoliter-scale sample volumes, the nanoPOTS platform is not compatible with automated LC-MS systems, which significantly limits sample throughput and robustness. To address this challenge, we have developed a nanoPOTS autosampler allowing fully automated sample injection from nanowells to LC-MS systems. We also developed a sample drying, extraction, and loading workflow to enable reproducible and reliable sample injection. The sequential analysis of 20 samples containing 10 ng tryptic peptides demonstrated high reproducibility with correlation coefficients of >0.995 between any two samples. The nanoPOTS autosampler can provide analysis throughput of 9.6, 16, and 24 single cells per day using 120, 60, and 30 min LC gradients, respectively. As a demonstration for single-cell proteomics, the autosampler was first applied to profiling protein expression in single MCF10A cells using a label-free approach. At a throughput of 24 single cells per day, an average of 256 proteins was identified from each cell and the number was increased to 731 when the Match Between Runs algorithm of MaxQuant was used. Using a multiplexed isobaric labeling approach (TMT-11plex), ∼77 single cells could be analyzed per day. We analyzed 152 cells from three acute myeloid leukemia cell lines, resulting in a total of 2558 identified proteins with 1465 proteins quantifiable (70% valid values) across the 152 cells. These data showed quantitative single-cell proteomics can cluster cells to distinct groups and reveal functionally distinct differences.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Nanotecnologia/métodos , Proteômica/métodos , Análise de Célula Única/métodos , Automação , Linhagem Celular Tumoral , Humanos
11.
Anal Chem ; 91(18): 11606-11613, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31418558

RESUMO

Protein phosphorylation is a critical post-translational modification (PTM). Despite recent technological advances in reversed-phase liquid chromatography (RPLC)-mass spectrometry (MS)-based proteomics, comprehensive phosphoproteomic coverage in complex biological systems remains challenging, especially for hydrophilic phosphopeptides with enriched regions of serines, threonines, and tyrosines that often orchestrate critical biological functions. To address this issue, we developed a simple, easily implemented method to introduce a commonly used tandem mass tag (TMT) to increase peptide hydrophobicity, effectively enhancing RPLC-MS analysis of hydrophilic peptides. Different from conventional TMT labeling, this method capitalizes on using a nonprimary amine buffer and TMT labeling occurring before C18-based solid phase extraction. Through phosphoproteomic analyses of MCF7 cells, we have demonstrated that this method can greatly increase the number of identified hydrophilic phosphopeptides and improve MS detection signals. We applied this method to study the peptide QPSSSR, a very hydrophilic tryptic peptide located on the C-terminus of the G protein-coupled receptor (GPCR) CXCR3. Identification of QPSSSR has never been reported, and we were unable to detect it by traditional methods. We validated our TMT labeling strategy by comparative RPLC-MS analyses of both a hydrophilic QPSSSR peptide library as well as common phosphopeptides. We further confirmed the utility of this method by quantifying QPSSSR phosphorylation abundances in HEK 293 cells under different treatment conditions predicted to alter QPSSSR phosphorylation. We anticipate that this simple TMT labeling method can be broadly used not only for decoding GPCR phosphoproteome but also for effective RPLC-MS analysis of other highly hydrophilic analytes.


Assuntos
Sondas Moleculares/química , Fosfopeptídeos/análise , Sequência de Aminoácidos , Cromatografia de Fase Reversa , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Biblioteca de Peptídeos , Fosfopeptídeos/química , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Succinimidas/química , Espectrometria de Massas em Tandem/métodos
12.
Anal Chem ; 91(9): 5794-5801, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843680

RESUMO

Comprehensive phosphoproteomic analysis of small populations of cells remains a daunting task due primarily to the insufficient MS signal intensity from low concentrations of enriched phosphopeptides. Isobaric labeling has a unique multiplexing feature where the "total" peptide signal from all channels (or samples) triggers MS/MS fragmentation for peptide identification, while the reporter ions provide quantitative information. In light of this feature, we tested the concept of using a "boosting" sample (e.g., a biological sample mimicking the study samples but available in a much larger quantity) in multiplexed analysis to enable sensitive and comprehensive quantitative phosphoproteomic measurements with <100 000 cells. This simple boosting to amplify signal with isobaric labeling (BASIL) strategy increased the overall number of quantifiable phosphorylation sites more than 4-fold. Good reproducibility in quantification was demonstrated with a median CV of 15.3% and Pearson correlation coefficient of 0.95 from biological replicates. A proof-of-concept experiment demonstrated the ability of BASIL to distinguish acute myeloid leukemia cells based on the phosphoproteome data. Moreover, in a pilot application, this strategy enabled quantitative analysis of over 20 000 phosphorylation sites from human pancreatic islets treated with interleukin-1ß and interferon-γ. Together, this signal boosting strategy provides an attractive solution for comprehensive and quantitative phosphoproteome profiling of relatively small populations of cells where traditional phosphoproteomic workflows lack sufficient sensitivity.


Assuntos
Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/metabolismo , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Antivirais/farmacologia , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Fosforilação
13.
Anal Chem ; 91(20): 13119-13127, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509397

RESUMO

Effective extension of mass spectrometry-based proteomics to single cells remains challenging. Herein we combined microfluidic nanodroplet technology with tandem mass tag (TMT) isobaric labeling to significantly improve analysis throughput and proteome coverage for single mammalian cells. Isobaric labeling facilitated multiplex analysis of single cell-sized protein quantities to a depth of ∼1 600 proteins with a median CV of 10.9% and correlation coefficient of 0.98. To demonstrate in-depth high throughput single cell analysis, the platform was applied to measure protein expression in 72 single cells from three murine cell populations (epithelial, immune, and endothelial cells) in <2 days instrument time with over 2 300 proteins identified. Principal component analysis grouped the single cells into three distinct populations based on protein expression with each population characterized by well-known cell-type specific markers. Our platform enables high throughput and unbiased characterization of single cell heterogeneity at the proteome level.


Assuntos
Proteoma/análise , Proteômica/métodos , Análise de Célula Única/métodos , Animais , Cromatografia Líquida , Marcação por Isótopo , Camundongos , Microfluídica , Análise de Componente Principal , Proteoma/química , Espectrometria de Massas em Tandem/métodos
14.
Anal Chem ; 91(15): 9707-9715, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31241912

RESUMO

Two-dimensional reversed-phase capillary liquid chromatography (2D RPLC) separations have enabled comprehensive proteome profiling of biological systems. However, milligram sample quantities of proteins are typically required due to significant losses during offline fractionation. Such a large sample requirement generally precludes the application samples in the nanogram to low-microgram range. To achieve in-depth proteomic analysis of such small-sized samples, we have developed the nanoFAC (nanoflow Fractionation and Automated Concatenation) 2D RPLC platform, in which the first dimension high-pH fractionation was performed on a 75-µm i.d. capillary column at a 300 nL/min flow rate with automated fraction concatenation, instead of on a typically used 2.1 mm column at a 200 µL/min flow rate with manual concatenation. Each fraction was then fully transferred to the second-dimension low-pH nanoLC separation using an autosampler equipped with a custom-machined syringe. We have found that using a polypropylene 96-well plate as collection device as well as the addition of n-Dodecyl ß-d-maltoside (0.01%) in the collection buffer can significantly improve sample recovery. We have demonstrated the nanoFAC 2D RPLC platform can achieve confident identifications of ∼49,000-94,000 unique peptides, corresponding to ∼6,700-8,300 protein groups using only 100-1000 ng of HeLa tryptic digest (equivalent to ∼500-5,000 cells). Furthermore, by integrating with phosphopeptide enrichment, the nanoFAC 2D RPLC platform can identify ∼20,000 phosphopeptides from 100 µg of MCF-7 cell lysate.


Assuntos
Automação , Cromatografia de Fase Reversa/métodos , Nanotecnologia/métodos , Fosfoproteínas/química , Cromatografia de Fase Reversa/instrumentação , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanotecnologia/instrumentação , Shewanella
15.
Proc Natl Acad Sci U S A ; 112(22): 6955-60, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25971727

RESUMO

Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.


Assuntos
Receptores ErbB/metabolismo , Modelos Moleculares , Neuraminidase/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Linhagem Celular Tumoral , Dimerização , Inibidores Enzimáticos , Receptores ErbB/genética , Gefitinibe , Humanos , Mutação de Sentido Incorreto/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Quinazolinas
16.
Proteomics ; 16(15-16): 2257-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246681

RESUMO

We describe an improved version of the data-independent acquisition (DIA) computational analysis tool DIA-Umpire, and show that it enables highly sensitive, untargeted, and direct (spectral library-free) analysis of DIA data obtained using the Orbitrap family of mass spectrometers. DIA-Umpire v2 implements an improved feature detection algorithm with two additional filters based on the isotope pattern and fractional peptide mass analysis. The targeted re-extraction step of DIA-Umpire is updated with an improved scoring function and a more robust, semiparametric mixture modeling of the resulting scores for computing posterior probabilities of correct peptide identification in a targeted setting. Using two publicly available Q Exactive DIA datasets generated using HEK-293 cells and human liver microtissues, we demonstrate that DIA-Umpire can identify similar number of peptide ions, but with better identification reproducibility between replicates and samples, as with conventional data-dependent acquisition. We further demonstrate the utility of DIA-Umpire using a series of Orbitrap Fusion DIA experiments with HeLa cell lysates profiled using conventional data-dependent acquisition and using DIA with different isolation window widths.


Assuntos
Biologia Computacional/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Células HEK293 , Células HeLa , Humanos
17.
J Proteome Res ; 14(12): 5396-407, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26549055

RESUMO

Protein experiment evidence at protein level from mass spectrometry and antibody experiments are essential to characterize the human proteome. neXtProt (2014-09 release) reported 20 055 human proteins, including 16 491 proteins identified at protein level and 3564 proteins unidentified. Excluding 616 proteins at uncertain level, 2948 proteins were regarded as missing proteins. Missing proteins were unidentified partially due to MS limitations and intrinsic properties of proteins, for example, only appearing in specific diseases or tissues. Despite such reasons, it is desirable to explore issues affecting validation of missing proteins from an "ideal" shotgun analysis of human proteome. We thus performed in silico digestions on the human proteins to generate all in silico fully digested peptides. With these presumed peptides, we investigated the identification of proteins without any unique peptide, the effect of sequence variants on protein identification, difficulties in identifying olfactory receptors, and highly similar proteins. Among all proteins with evidence at transcript level, G protein-coupled receptors and olfactory receptors, based on InterPro classification, were the largest families of proteins and exhibited more frequent variants. To identify missing proteins, the above analyses suggested including sequence variants in protein FASTA for database searching. Furthermore, evidence of unique peptides identified from MS experiments would be crucial for experimentally validating missing proteins.


Assuntos
Proteômica/métodos , Sequência de Aminoácidos , Anexinas/química , Anexinas/genética , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Variação Genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Proteólise , Proteoma/química , Proteoma/genética , Proteoma/isolamento & purificação , Proteômica/estatística & dados numéricos , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/isolamento & purificação
18.
J Proteome Res ; 14(9): 3658-69, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26202522

RESUMO

Despite significant efforts in the past decade toward complete mapping of the human proteome, 3564 proteins (neXtProt, 09-2014) are still "missing proteins". Over one-third of these missing proteins are annotated as membrane proteins, owing to their relatively challenging accessibility with standard shotgun proteomics. Using nonsmall cell lung cancer (NSCLC) as a model study, we aim to mine missing proteins from disease-associated membrane proteome, which may be still largely under-represented. To increase identification coverage, we employed Hp-RP StageTip prefractionation of membrane-enriched samples from 11 NSCLC cell lines. Analysis of membrane samples from 20 pairs of tumor and adjacent normal lung tissue was incorporated to include physiologically expressed membrane proteins. Using multiple search engines (X!Tandem, Comet, and Mascot) and stringent evaluation of FDR (MAYU and PeptideShaker), we identified 7702 proteins (66% membrane proteins) and 178 missing proteins (74 membrane proteins) with PSM-, peptide-, and protein-level FDR of 1%. Through multiple reaction monitoring using synthetic peptides, we provided additional evidence of eight missing proteins including seven with transmembrane helix domains. This study demonstrates that mining missing proteins focused on cancer membrane subproteome can greatly contribute to map the whole human proteome. All data were deposited into ProteomeXchange with the identifier PXD002224.


Assuntos
Proteínas de Membrana/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Proteoma
19.
Anal Chem ; 87(24): 12016-23, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26554430

RESUMO

Membrane proteins are crucial targets for cancer biomarker discovery and drug development. However, in addition to the inherent challenges of hydrophobicity and low abundance, complete membrane proteome coverage of clinical specimen is usually hindered by the requirement of large amount of starting materials. Toward comprehensive membrane proteomic profiling for small amounts of samples (10 µg), we developed high-pH reverse phase (Hp-RP) combined with stop-and-go extraction tip (StageTip) technique, as a fast (∼15 min.), sensitive, reproducible, high-resolution and multiplexed fractionation method suitable for accurate quantification of the membrane proteome. This approach provided almost 2-fold enhanced detection of peptides encompassing transmembrane helix (TMH) domain, as compared with strong anion exchange (SAX) and strong cation exchange (SCX) StageTip techniques. Almost 5000 proteins (∼60% membrane proteins) can be identified in only 10 µg of membrane protein digests, showing the superior sensitivity of the Hp-RP StageTip approach. The method allowed up to 9- and 6-fold increase in the identification of unique hydrophobic and hydrophilic peptides, respectively. The Hp-RP StageTip method enabled in-depth membrane proteome profiling of 11 lung cancer cell lines harboring different EGFR mutation status, which resulted in the identification of 3983 annotated membrane proteins. This provides the largest collection of reference peptide spectral data for lung cancer membrane subproteome. Finally, relative quantification of membrane proteins between Gefitinib-resistant and -sensitive lung cancer cell lines revealed several up-regulated membrane proteins with key roles in lung cancer progression.


Assuntos
Proteínas de Membrana/análise , Proteínas de Membrana/isolamento & purificação , Proteômica/métodos , Linhagem Celular Tumoral , Humanos , Limite de Detecção , Neoplasias Pulmonares/fisiopatologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Mutação , Fatores de Tempo
20.
Anal Chem ; 86(1): 685-93, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24313913

RESUMO

Methodologies to enrich heterogeneous types of phosphopeptides are critical for comprehensive mapping of the under-explored phosphoproteome. Taking advantage of the distinct binding affinities of Ga(3+) and Fe(3+) for phosphopeptides, we designed a metal-directed immobilized metal ion affinity chromatography for the sequential enrichment of phosphopeptides. In Raji B cells, the sequential Ga(3+)-Fe(3+)-immobilized metal affinity chromatography (IMAC) strategy displayed a 1.5-3.5-fold superior phosphoproteomic coverage compared to single IMAC (Fe(3+), Ti(4+), Ga(3+), and Al(3+)). In addition, up to 92% of the 6283 phosphopeptides were uniquely enriched in either the first Ga(3+)-IMAC (41%) or second Fe(3+)-IMAC (51%). The complementary properties of Ga(3+) and Fe(3+) were further demonstrated through the exclusive enrichment of almost all of 1214 multiply phosphorylated peptides (99.4%) in the Ga(3+)-IMAC, whereas only 10% of 5069 monophosphorylated phosphopeptides were commonly enriched in both fractions. The application of sequential Ga(3+)-Fe(3+)-IMAC to human lung cancer tissue allowed the identification of 2560 unique phosphopeptides with only 8% overlap. In addition to the above-mentioned mono- and multiply phosphorylated peptides, this fractionation ability was also demonstrated on the basic and acidic phosphopeptides: acidophilic phosphorylation sites were predominately enriched in the first Ga(3+)-IMAC (72%), while Pro-directed (85%) and basophilic (79%) phosphorylation sites were enriched in the second Fe(3+)-IMAC. This strategy provided complementary mapping of different kinase substrates in multiple cellular pathways related to cancer invasion and metastasis of lung cancer. Given the fractionation ability and ease of tip preparation of this Ga(3+)-Fe(3+)-IMAC, we propose that this strategy allows more comprehensive characterization of the phosphoproteome both in vitro and in vivo.


Assuntos
Cromatografia de Afinidade/métodos , Metais/química , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Linhagem Celular Tumoral , Células Imobilizadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA