RESUMO
Compared with their three-dimensional (3D) counterparts, low-dimensional metal halide perovskites (2D and quasi-2D; B2An-1MnX3n+1, such as B = R-NH3+, A = HC(NH2)2+, Cs+; M = Pb2+, Sn2+; X = Cl-, Br-, I-) with periodic inorganic-organic structures have shown promising stability and hysteresis-free electrical performance1-6. However, their unique multiple-quantum-well structure limits the device efficiencies because of the grain boundaries and randomly oriented quantum wells in polycrystals7. In single crystals, the carrier transport through the thickness direction is hindered by the layered insulating organic spacers8. Furthermore, the strong quantum confinement from the organic spacers limits the generation and transport of free carriers9,10. Also, lead-free metal halide perovskites have been developed but their device performance is limited by their low crystallinity and structural instability11. Here we report a low-dimensional metal halide perovskite BA2MAn-1SnnI3n+1 (BA, butylammonium; MA, methylammonium; n = 1, 3, 5) superlattice by chemical epitaxy. The inorganic slabs are aligned vertical to the substrate and interconnected in a criss-cross 2D network parallel to the substrate, leading to efficient carrier transport in three dimensions. A lattice-mismatched substrate compresses the organic spacers, which weakens the quantum confinement. The performance of a superlattice solar cell has been certified under the quasi-steady state, showing a stable 12.36% photoelectric conversion efficiency. Moreover, an intraband exciton relaxation process may have yielded an unusually high open-circuit voltage (VOC).
RESUMO
Organic-inorganic hybrid perovskites have electronic and optoelectronic properties that make them appealing in many device applications1-4. Although many approaches focus on polycrystalline materials5-7, single-crystal hybrid perovskites show improved carrier transport and enhanced stability over their polycrystalline counterparts, due to their orientation-dependent transport behaviour8-10 and lower defect concentrations11,12. However, the fabrication of single-crystal hybrid perovskites, and controlling their morphology and composition, are challenging12. Here we report a solution-based lithography-assisted epitaxial-growth-and-transfer method for fabricating single-crystal hybrid perovskites on arbitrary substrates, with precise control of their thickness (from about 600 nanometres to about 100 micrometres), area (continuous thin films up to about 5.5 centimetres by 5.5 centimetres), and composition gradient in the thickness direction (for example, from methylammonium lead iodide, MAPbI3, to MAPb0.5Sn0.5I3). The transferred single-crystal hybrid perovskites are of comparable quality to those directly grown on epitaxial substrates, and are mechanically flexible depending on the thickness. Lead-tin gradient alloying allows the formation of a graded electronic bandgap, which increases the carrier mobility and impedes carrier recombination. Devices based on these single-crystal hybrid perovskites show not only high stability against various degradation factors but also good performance (for example, solar cells based on lead-tin-gradient structures with an average efficiency of 18.77 per cent).
RESUMO
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to â¼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.
RESUMO
BACKGROUND: This study aimed to develop an automated method to measure the gray-white matter ratio (GWR) from brain computed tomography (CT) scans of patients with out-of-hospital cardiac arrest (OHCA) and assess its significance in predicting early-stage neurological outcomes. METHODS: Patients with OHCA who underwent brain CT imaging within 12 h of return of spontaneous circulation were enrolled in this retrospective study. The primary outcome endpoint measure was a favorable neurological outcome, defined as cerebral performance category 1 or 2 at hospital discharge. We proposed an automated method comprising image registration, K-means segmentation, segmentation refinement, and GWR calculation to measure the GWR for each CT scan. The K-means segmentation and segmentation refinement was employed to refine the segmentations within regions of interest (ROIs), consequently enhancing GWR calculation accuracy through more precise segmentations. RESULTS: Overall, 443 patients were divided into derivation N=265, 60% and validation N=178, 40% sets, based on age and sex. The ROI Hounsfield unit values derived from the automated method showed a strong correlation with those obtained from the manual method. Regarding outcome prediction, the automated method significantly outperformed the manual method in GWR calculation (AUC 0.79 vs. 0.70) across the entire dataset. The automated method also demonstrated superior performance across sensitivity, specificity, and positive and negative predictive values using the cutoff value determined from the derivation set. Moreover, GWR was an independent predictor of outcomes in logistic regression analysis. Incorporating the GWR with other clinical and resuscitation variables significantly enhanced the performance of prediction models compared to those without the GWR. CONCLUSIONS: Automated measurement of the GWR from non-contrast brain CT images offers valuable insights for predicting neurological outcomes during the early post-cardiac arrest period.
Assuntos
Parada Cardíaca Extra-Hospitalar , Substância Branca , Humanos , Estudos Retrospectivos , Substância Cinzenta/diagnóstico por imagem , Parada Cardíaca Extra-Hospitalar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , PrognósticoRESUMO
The dynamic nature of the metal halide perovskite lattice upon photoexcitation plays a vital role in their properties. Here we report an observation of light-induced structure dynamics in quasi-2D Ruddlesden-Popper phase perovskite thin films and its impact on the carrier transport properties. By a time-resolved X-ray scattering technique, we observe a rapid lattice expansion upon photoexcitation, followed by a slow relaxation over the course of 100 ns in the dark. Theoretical modeling suggests that the expansion originates from the lattice's thermal fluctuations caused by photon energy deposition. Power dependent optical spectroscopy and photoconductivity indicate that high laser powers triggered a strong local structural disorder, which increased the charge dissociation activation energy that results in localized transport. Our study investigates the impact of laser energy deposition on the lattices and the subsequent carrier transport properties, that are relevant to device operations.
RESUMO
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amineâin addition to its steric bulkâis an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.
RESUMO
Three-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley-Queisser limit for a singlejunction solar cell (33.5 per cent). Besides efficiency, another critical factor for photovoltaics and other optoelectronic applications is environmental stability and photostability under operating conditions. In contrast to their three-dimensional counterparts, Ruddlesden-Popper phases--layered two-dimensional perovskite films--have shown promising stability, but poor efficiency at only 4.73 per cent. This relatively poor efficiency is attributed to the inhibition of out-of-plane charge transport by the organic cations, which act like insulating spacing layers between the conducting inorganic slabs. Here we overcome this issue in layered perovskites by producing thin films of near-single-crystalline quality, in which the crystallographic planes of the inorganic perovskite component have a strongly preferential out-of-plane alignment with respect to the contacts in planar solar cells to facilitate efficient charge transport. We report a photovoltaic efficiency of 12.52 per cent with no hysteresis, and the devices exhibit greatly improved stability in comparison to their three-dimensional counterparts when subjected to light, humidity and heat stress tests. Unencapsulated two-dimensional perovskite devices retain over 60 per cent of their efficiency for over 2,250 hours under constant, standard (AM1.5G) illumination, and exhibit greater tolerance to 65 per cent relative humidity than do three-dimensional equivalents. When the devices are encapsulated, the layered devices do not show any degradation under constant AM1.5G illumination or humidity. We anticipate that these results will lead to the growth of single-crystalline, solution-processed, layered, hybrid, perovskite thin films, which are essential for high-performance opto-electronic devices with technologically relevant long-term stability.
RESUMO
In the fast-evolving field of halide perovskite semiconductors, the 2D perovskites (A')2(A) n-1M n X3n+1 [where A = Cs+, CH3NH3+, HC(NH2)2+; A' = ammonium cation acting as spacer; M = Ge2+, Sn2+, Pb2+; and X = Cl-, Br-, I-] have recently made a critical entry. The n value defines the thickness of the 2D layers, which controls the optical and electronic properties. The 2D perovskites have demonstrated preliminary optoelectronic device lifetime superior to their 3D counterparts. They have also attracted fundamental interest as solution-processed quantum wells with structural and physical properties tunable via chemical composition, notably by the n value defining the perovskite layer thickness. The higher members (n > 5) have not been documented, and there are important scientific questions underlying fundamental limits for n To develop and utilize these materials in technology, it is imperative to understand their thermodynamic stability, fundamental synthetic limitations, and the derived structure-function relationships. We report the effective synthesis of the highest iodide n-members yet, namely (CH3(CH2)2NH3)2(CH3NH3)5Pb6I19 (n = 6) and (CH3(CH2)2NH3)2(CH3NH3)6Pb7I22 (n = 7), and confirm the crystal structure with single-crystal X-ray diffraction, and provide indirect evidence for "(CH3(CH2)2NH3)2(CH3NH3)8Pb9I28" ("n = 9"). Direct HCl solution calorimetric measurements show the compounds with n > 7 have unfavorable enthalpies of formation (ΔHf), suggesting the formation of higher homologs to be challenging. Finally, we report preliminary n-dependent solar cell efficiency in the range of 9-12.6% in these higher n-members, highlighting the strong promise of these materials for high-performance devices.
RESUMO
Spontaneous intracerebral hemorrhage (ICH) is a common disease associated with high mortality and morbidity. The treatment of patients with ICH includes medical and surgical interventions. New areas of surgical intervention have been focused on the evacuation of hematoma through minimally invasive neurosurgery. In contrast, there have been no significant advances in the development of medical interventions for functional recovery after ICH. Stem cells exert multiple therapeutic functions and have emerged as a promising treatment strategy. Herein, we summarized the pathophysiology of ICH and its treatment targets, and we introduced the therapeutic mechanisms of stem cells (e.g. neutrotrophy and neuroregeneration). Moreover, we reviewed and summarized the experimental designs of the preclinical studies, including the types of cells and the timing and routes of stem cell administration. We further listed and reviewed the completed/published and ongoing clinical trials supporting the safety and efficacy of stem cell therapy in ICH. The limitations of translating preclinical studies into clinical trials and the objectives of future studies were discussed. In conclusion, current literatures showed that stem cell therapy is a promising treatment in ICH and further translation research on judiciously selected group of patients is warranted before it can be extensively applied in clinical practice.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Hemorragia Cerebral/terapia , Transplante de Células-Tronco/tendências , Terapia Baseada em Transplante de Células e Tecidos/tendências , Hemorragia Cerebral/cirurgia , Hematoma/cirurgia , Humanos , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismoRESUMO
The unique hybrid nature of 2D Ruddlesden-Popper (R-P) perovskites has bestowed upon them not only tunability of their electronic properties but also high-performance electronic devices with improved environmental stability as compared to their 3D analogs. However, there is limited information about their inherent heat, light, and air stability and how different parameters such as the inorganic layer number and length of organic spacer molecule affect stability. To gain deeper understanding on the matter we have expanded the family of 2D R-P perovskites, by utilizing pentylamine (PA)2(MA) n-1Pb nI3 n+1 ( n = 1-5, PA = CH3(CH2)4NH3+, C5) and hexylamine (HA)2(MA) n-1Pb nI3 n+1 ( n = 1-4, HA = CH3(CH2)5NH3+, C6) as the organic spacer molecules between the inorganic slabs, creating two new series of layered materials, for up to n = 5 and 4 layers, respectively. The resulting compounds were extensively characterized through a combination of physical and spectroscopic methods, including single crystal X-ray analysis. High resolution powder X-ray diffraction studies using synchrotron radiation shed light for the first time to the phase transitions of the higher layer 2D R-P perovskites. The increase in the length of the organic spacer molecules did not affect their optical properties; however, it has a pronounced effect on the air, heat, and light stability of the fabricated thin films. An extensive study of heat, light, and air stability with and without encapsulation revealed that specific compounds can be air stable (relative humidity (RH) = 20-80% ± 5%) for more than 450 days, while heat and light stability in air can be exponentially increased by encapsulating the corresponding films. Evaluation of the out-of-plane mechanical properties of the corresponding materials showed that their soft and flexible nature can be compared to current commercially available polymer substrates (e.g., PMMA), rendering them suitable for fabricating flexible and wearable electronic devices.
RESUMO
Surface states are ubiquitous to semiconductors and significantly impact the physical properties and, consequently, the performance of optoelectronic devices. Moreover, surface effects are strongly amplified in lower dimensional systems such as quantum wells and nanostructures. Layered halide perovskites (LHPs) are two-dimensional solution-processed natural quantum wells where optoelectronic properties can be tuned by varying the perovskite layer thickness n, i.e., the number of octahedra spanning the layer. They are efficient semiconductors with technologically relevant stability. Here, a generic elastic model and electronic structure modeling are applied to LHPs heterostructures with various layer thickness. We show that the relaxation of the interface strain is triggered by perovskite layers above a critical thickness. This leads to the release of the mechanical energy arising from the lattice mismatch, which nucleates the surface reorganization and may potentially induce the formation of previously observed lower energy edge states. These states, which are absent in three-dimensional perovskites are anticipated to play a crucial role in the design of LHPs for optoelectronic systems.
RESUMO
Low-dimensional halide perovskites have recently attracted intense interest as alternatives to the three-dimensional (3D) perovskites because of their greater tunability and higher environmental stability. Herein, we present the new homologous 2D series (NH3C mH2 mNH3)(CH3NH3) n-1Pb nI3 n+1 ( m = 4-9; n = 1-4), where m represents the carbon-chain number and n equals layer-thickness number. Multilayer ( n > 1) 2D perovskites incorporating diammonium cations were successfully synthesized by the solid-state grinding method for m = 4 and 6 and by the solution method for m = 7-9. Structural characterization by single-crystal X-ray diffraction for the m = 8 and m = 9 series ( n = 1-4) reveals that these compounds adopt the Cc space group for even n members and Pc for odd n members. The optical bandgaps are 2.15 eV for two-layer ( n = 2), 2.01 eV for three-layer ( n = 3), and 1.90 eV for four-layer ( n = 4). The materials exhibit excellent solution processability, and casting thin-films of the n = 3 members was successfully accomplished. The films show a clear tendency for the higher- m members to have preferred orientation on the glass substrate, with m = 8 exhibiting almost perfect vertical layer orientation and m = 9 displaying both vertical and parallel layer orientation, as confirmed by grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements. The vertical layer orientation for the (NH3C8H16NH3)(CH3NH3)2Pb3I10 member results in the best thermal, light, and air stability within this series, thus showing excellent potential for solar cell applications.
RESUMO
We present the new homologous series (C(NH2)3)(CH3NH3)nPbnI3n+1 (n = 1, 2, 3) of layered 2D perovskites. Structural characterization by single-crystal X-ray diffraction reveals that these compounds adopt an unprecedented structure type, which is stabilized by the alternating ordering of the guanidinium and methylammonium cations in the interlayer space (ACI). Compared to the more common Ruddlesden-Popper (RP) 2D perovskites, the ACI perovskites have a different stacking motif and adopt a higher crystal symmetry. The higher symmetry of the ACI perovskites is expressed in their physical properties, which show a characteristic decrease of the bandgap with respect to their RP perovskite counterparts with the same perovskite layer thickness (n). The compounds show a monotonic decrease in the optical gap as n increases: Eg = 2.27 eV for n = 1 to Eg = 1.99 eV for n = 2 and Eg = 1.73 eV for n = 3, which show slightly narrower gaps compared to the corresponding RP perovskites. First-principles theoretical electronic structure calculations confirm the experimental optical gap trends suggesting that the ACI perovskites are direct bandgap semiconductors with wide valence and conduction bandwidths. To assess the potential of the ACI perovskites toward solar cell applications, we studied the (C(NH2)3)(CH3NH3)3Pb3I10 (n = 3) compound. Compact thin films from the (C(NH2)3)(CH3NH3)3Pb3I10 compound with excellent surface coverage can be obtained from the antisolvent dripping method. Planar photovoltaic devices from optimized ACI perovskite films yield a power-conversion-efficiency of 7.26% with a high open-circuit voltage of â¼1 V and a striking fill factor of â¼80%.
RESUMO
Solution-processed organometallic perovskites have rapidly developed into a top candidate for the active layer of photovoltaic devices. Despite the remarkable progress associated with perovskite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses. Moreover, experiments elucidate unique degradation of photocurrent affecting stable operation of perovskite solar cells. These puzzles suggest that, while ionic hybrid perovskite devices may have efficiencies on par with conventional Si and GaAs devices, they exhibit more complicated charge transport phenomena. Here we report the results from an in-depth computational study of small polaron formation, electronic structure, charge density, and reorganization energies using both periodic boundary conditions and isolated structures. Using the hybrid density functional theory, we found that volumetric strain in a CsPbI3 cluster creates a polaron with binding energy of around 300 and 900 meV for holes and electrons, respectively. In the MAPbI3 (MA = CH3NH3) cluster, both volumetric strain and MA reorientation effects lead to larger binding energies at around 600 and 1300 meV for holes and electrons, respectively. Such large reorganization energies suggest appearance of small polarons in organometallic perovskite materials. The fact that both volumetric lattice strain and MA molecular rotational degrees of freedom can cooperate to create and stabilize polarons indicates that in order to mitigate this problem, formamidinium (FA = HC(NH2)2) and cesium (Cs) based crystals and alloys, are potentially better materials for solar cell and other optoelectronic applications.
RESUMO
Water-soluble cationic conjugated poly(phenylene vinylene) (PPV) and cationic fullerene were complexed with negatively charged single stranded DNA and double stranded DNA via electrostatic interactions to achieve photoinduced charge transfer with efficiencies as high as those observed from oppositely charged, cationic PPV and anionic fullerene but with distinctly different quenching mechanisms.
Assuntos
DNA/química , Fulerenos/química , Polivinil/química , Cátions/química , Estrutura Molecular , Processos Fotoquímicos , Eletricidade EstáticaRESUMO
The early identification of an individual's dementia risk is crucial for disease prevention and the design of insurance products in an aging society. This study aims to accurately predict the future incidence risk of dementia in individuals by leveraging the advantages of neural networks. This is, however, complicated by the high dimensionality and sparsity of the International Classification of Diseases (ICD) codes when utilizing data from Taiwan's National Health Insurance, which includes individual profiles and medical records. Inspired by the click-through rate (CTR) problem in recommendation systems, where future user behavior is predicted based on their past consumption records, we address these challenges with a multimodal attention network for dementia (MAND), which incorporates an ICD code embedding layer and multihead self-attention to encode ICD codes and capture interactions among diseases. Additionally, we investigate the applicability of several CTR methods to the dementia prediction problem. MAND achieves an AUC of 0.9010, surpassing traditional CTR models and demonstrating its effectiveness. The highly flexible pipelined design allows for module replacement to meet specific requirements. Furthermore, the analysis of attention scores reveals diseases highly correlated with dementia, aligning with prior research and emphasizing the interpretability of the model. This research deepens our understanding of the diseases associated with dementia, and the accurate prediction provided can serve as an early warning for dementia occurrence, aiding in its prevention.
RESUMO
Hole transport materials (HTMs) with appropriate energy levels and comprehensive passivation effects help to obtain highly efficient and stable perovskite solar cells (PSCs). Electron-deficient character-induced HTMs can generate varying energy level alignments near the HTM/perovskite interface. Herein, we report the synthesis and investigation of two new dipolar HTMs, WWC103 and WWC105, based on 2-(1,1-dicyanomethylene)rhodamine and 4-cynophenylacetonitrile acceptors, enabling high-efficiency mixed-cation mixed-halide perovskite solar cells. Apart from having different acceptors, these HTMs are built on a heterocyclic frame, which can provide passivation effects and improve the morphology of the perovskite layer. As a result, these dopant-free HTM-based solar cells show a high open-circuit voltage and good power conversion efficiency. Among both, the solar cell based on the HTM with 2-(1,1-dicyanomethylene)rhodamine exhibits a high open-circuit voltage of 1.09 V with a champion power conversion efficiency of over 20.51%. The improved performance of WWC103 over WWC105 (19.74%) is attributed to the new acceptor, which, in addition to providing good energy-level alignments and hole mobility, also holds the ability to passivate the defects. The findings suggest a new acceptor unit for constructing dopant-free HTMs for efficient PSCs.
RESUMO
The high luminous efficiency and superior uniformity of angular-dependent correlated color temperature (CCT) white light-emitting diodes have been investigated by ZrO2 nano-particles in a remote phosphor structure. By adding ZrO2 nano-particles with silicone onto the surface of the phosphor layer, the capability of light scattering could be enhanced. In particular, the intensity of blue light at large angles was increased and the CCT deviations could be reduced. Besides, the luminous flux was improved due to the ZrO2 nano-particles with silicone providing a suitable refractive index between air and phosphor layers. This novel structure reduces angular-dependent CCT deviations from 1000 to 420 K in the range of -70° to 70°. Moreover, the enhancement of lumen flux was increased by 2.25% at a driving current 120 mA, compared to a conventional remote phosphor structure without ZrO2 nano-particles. Consequently, the ZrO2 nano-particles in a remote phosphor structure could not only improve the uniformity of lighting but also increase the light output.
RESUMO
Polycrystalline perovskite film-based X-ray detector is an appealing technology for assembling large scale imager by printing methods. However, thick crystalline layer without trap and solvent residual is challenging to fabricate. Here, the authors report a solution method to produce high quality quasi-2D perovskite crystalline layers and detectors that are suitable for X-ray imaging. By introducing n-butylamine iodide into methylammonium lead iodide precursor and coating at elevated temperatures, compact and crystalline layers with exceptional uniformity are obtained on both rigid and flexible substrates. Photodiodes built with the quasi-2D layers exhibit a low dark current and stable operation under constant electrical field over 96 h in dark, and over 15 h under X-ray irradiation. The detector responds sensitively under X-ray, delivering a high sensitivity of 1214 µC Gyair -1 cm-2 and a sensitivity gain is observed when operated under higher fields. Finally, high resolution images are demonstrated using a single pixel device that can resolve 80-200 µm features. This work paves the path for printable direct conversion X-ray imager development.
RESUMO
All inorganic cesium lead trihalide nanocrystals are promising light emitters for bright light emitting diodes (LEDs). Here, CsPb(BrCl)1.5 nanocrystals in metal-organic frameworks (MOF) thin films are demonstrated to achieve bright and stable blue LEDs. The lead metal nodes in the MOF thin film react with Cs-halide salts, resulting in 10-20 nm nanocrystals. This is revealed by X-ray scattering and transmission electron microscopy. Employing the CsPbX3 -MOF thin films as emission layers, bright deep blue and sky-blue LEDs are demonstrated that emit at 452 and 476 nm respectively. The maximum external quantum efficiencies of these devices are 0.72% for deep blue LEDs and 5.6% for sky blue LEDs. More importantly, the device can maintain 50% of its original electroluminescence (T50 ) for 2.23 h when driving at 4.2 V. Detailed optical spectroscopy and time-of-flight secondary ion mass spectroscopy suggest that the ion migration can be suppressed that maintains the emission brightness and spectra. The study provides a new route for fabricating stable blue light emitting diodes with all-inorganic perovskite nanocrystals.