Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oncologist ; 24(8): e765-e774, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30808815

RESUMO

BACKGROUND: There are limited data to predict which novel childhood cancer therapies are likely to be successful. To help rectify this, we sought to identify the factors that impact the success of phase II clinical trials for pediatric malignancies. MATERIALS AND METHODS: We examined the impact of 24 preclinical and trial design variables for their influence on 132 phase II pediatric oncology clinical trials. Success was determined by an objective assessment of patient response, with data analyzed using Fisher's exact test, Pearson's chi-square test, and logistic regression models. RESULTS: Trials that evaluated patients with a single histological cancer type were more successful than those that assessed multiple different cancer types (68% vs. 47%, 27%, and 17% for 1, 2-3, 4-7, and 8+; p < .005). Trials on liquid or extracranial solid tumors were more successful than central nervous system or combined trials (70%, 60%, 38%, and 24%; p < .005), and trials of combination therapies were more successful than single agents (71% vs. 28%; p < .005). Trials that added therapies to standard treatment backbones were more successful than trials testing novel therapies alone or those that incorporated novel agents (p < .005), and trials initiated based on the results of adult studies were less likely to succeed (p < .05). For 61% of trials (80/132), we were unable to locate any relevant preclinical findings to support the trial. When preclinical studies were carried out (52/132), there was no evidence that the conduct of any preclinical experiments made the trial more likely to succeed (p < .005). CONCLUSION: Phase II pediatric oncology clinical trials that examine a single cancer type and use combination therapies have the highest possibility of clinical success. Trials building upon a standard treatment regimen were also more successful. The conduct of preclinical experiments did not improve clinical success, emphasizing the need for a better understanding of the translational relevance of current preclinical testing paradigms. IMPLICATIONS FOR PRACTICE: To improve the clinical outcomes of phase II childhood cancer trials, this study identified factors impacting clinical success. These results have the potential to impact not only the design of future clinical trials but also the assessment of preclinical studies moving forward. This work found that trials on one histological cancer type and trials testing combination therapies had the highest possibility of success. Incorporation of novel therapies into standard treatment backbones led to higher success rates than testing novel therapies alone. This study found that most trials had no preclinical evidence to support initiation, and even when preclinical studies were available, they did not result in improved success.


Assuntos
Ensaios Clínicos Fase II como Assunto/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Criança , Guias como Assunto , Humanos , Pediatria/métodos , Projetos de Pesquisa
2.
J Neurooncol ; 141(2): 265, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30484110

RESUMO

There are two errors and one omission in the original article. Author Gottardo's correct name is Nicholas G. Gottardo, author Hulleman's correct affiliation is no. 3 (VUMC, Amsterdam), and the Acknowledgements should include the following sentence: "We would like to thank Dr Angel Montero Carcaboso (Hospital Sant Joan de Deu, Barcelona, Spain) for generously supplying the HSJD-DIPG007 cells."

3.
J Neurooncol ; 141(2): 253-263, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30446898

RESUMO

PURPOSE: Diffuse intrinsic pontine glioma is the most aggressive form of high grade glioma in children with no effective therapies. There have been no improvements in survival in part due poor understanding of underlying biology, and lack of representative in vitro and in vivo models. Recently, it has been found feasible to use both biopsy and autopsy tumors to generate cultures and xenograft models. METHODS: To further model development, we evaluated the collective international experience from 8 collaborating centers to develop DIPG pre-clinical models from patient-derived autopsies and biopsies. Univariate and multivariate analysis was performed to determine key factors associated with the success of in vitro and in vivo PDX development. RESULTS: In vitro cultures were successfully established from 57% of samples (84.2% of biopsies and 38.2% of autopsies). Samples transferred in DMEM media were more likely to establish successful culture than those transported in Hibernate A. In vitro cultures were more successful from biopsies (84.2%) compared with autopsies (38.2%) and as monolayer on laminin-coated plates than as neurospheres. Primary cultures successfully established from autopsy samples were more likely to engraft in animal models than cultures established from biopsies (86.7% vs. 47.4%). Collectively, tumor engraftment was more successful when DIPG samples were directly implanted in mice (68%), rather than after culturing (40.7%). CONCLUSION: This multi-center study provides valuable information on the success rate of establishing patient-derived pre-clinical models of DIPG. The results can lead to further optimization of DIPG model development and ultimately assist in the investigation of new therapies for this aggressive pediatric brain tumor.


Assuntos
Neoplasias do Tronco Encefálico/fisiopatologia , Neoplasias do Tronco Encefálico/terapia , Glioma/fisiopatologia , Glioma/terapia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias do Tronco Encefálico/genética , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Glioma/genética , Histonas/genética , Humanos , Camundongos , Mutação , Estudos Retrospectivos
4.
Semin Cell Dev Biol ; 54: 68-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26529279

RESUMO

Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes.


Assuntos
Tecido Adiposo/metabolismo , Caquexia/etiologia , Caquexia/metabolismo , Lipólise , Neoplasias/complicações , Termogênese , Animais , Caquexia/fisiopatologia , Metabolismo Energético , Humanos , Neoplasias/fisiopatologia
5.
Br J Cancer ; 119(6): 693-696, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30220707

RESUMO

Genes encoding TRK are oncogenic drivers in multiple tumour types including infantile fibrosarcoma, papillary thyroid cancer and high-grade gliomas (HGG). TRK fusions have a critical role in tumourigenesis in 40% of infant HGG. Here we report the first case of a TRK fusion-driven HGG treated with larotrectinib-the first selective pan-TRK inhibitor in clinical development. This 3-year-old girl had failed multiple therapies including chemotherapy and radiotherapy. Tumour profiling confirmed an ETV6-NTRK3 fusion. Treatment with larotrectinib led to rapid clinical improvement with near total resolution of primary and metastatic lesions on MRI imaging. This is the first report of a TRK fusion glioma successfully treated with a TRK inhibitor.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Pré-Escolar , Feminino , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Humanos , Imageamento por Ressonância Magnética , Gradação de Tumores , Proteínas de Fusão Oncogênica/genética , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Resultado do Tratamento , Sequenciamento Completo do Genoma
6.
Methods Mol Biol ; 2806: 75-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676797

RESUMO

The development of clinically relevant and reliable models of central nervous system tumors has been instrumental in advancing the field of Neuro-Oncology. The orthotopic intracranial injection is widely used to study the growth, invasion, and spread of tumors in a controlled environment. Orthotopic models are performed to examine tumor cells isolated from a specific region in a patient in the same site or location in an animal model. Orthotopic brain tumor models are also utilized for preclinical testing of therapeutics as they closely recapitulate the behavior of such cancer and the brain environment of patients. Below, we describe our experiences in the development of murine models of pediatric brain tumors including diffuse midline glioma (DMG), glioblastoma (GBM), and medulloblastoma. The method provides an overview of intracranial stereotactic injections in mice.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Criança , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Meduloblastoma/patologia , Glioma/patologia , Glioblastoma/patologia , Xenoenxertos
7.
Neurooncol Adv ; 6(1): vdae029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550394

RESUMO

Background: Diffuse intrinsic pontine gliomas (DIPGs) pose a significant challenge as a highly aggressive and currently incurable form of pediatric brain cancer, necessitating the development of novel therapeutic strategies. Omacetaxine, an FDA-approved protein synthesis inhibitor for treating certain hematological malignancies, was investigated for its potential antitumor effects against preclinical DIPG models. Methods: We employed primary DIPG cultures to study omacetaxine's cytotoxicity and its impact on colony formation. Annexin V staining and flow cytometry assessed apoptosis. Wound healing assays evaluated migration, while western blotting determined inhibition of oncogenic proteins. We tested omacetaxine's therapeutic efficacy in an orthotopic DIPG model and assessed brain penetration using mass spectrometry. Results: We found a pronounced cytotoxic activity of omacetaxine against DIPG neurospheres, with low IC50 values of approximately 20 nM. Omacetaxine exerted its anti-proliferative effect by inhibiting protein synthesis and the induction of apoptotic pathways, evidenced by significant elevated levels of cleaved caspase 3 and cleaved PARP, both key markers of apoptosis. Omacetaxine effectively targeted oncogenic players such as PDGFRα and PI3K without additional effects on the mTOR signaling pathway. Furthermore, our study revealed the inhibitory effects of omacetaxine on cell migration, and a significant reduction in integrin/FAK signaling, which plays a crucial role in tumor progression and metastasis. Conclusions: Despite these promising in vitro effects, omacetaxine's efficacy in an orthotopic DIPG model was limited due to inadequate penetration across the blood-brain barrier. As such, further research and advancements are crucial to improve the drug's brain penetration, thus enhancing its overall therapeutic potential.

8.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
9.
Mol Cell Proteomics ; 10(9): M900538MCP200, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20167946

RESUMO

Cancer is well known to be associated with alterations in membrane protein glycosylation (Bird, N. C., Mangnall, D., and Majeed, A. W. (2006) Biology of colorectal liver metastases: A review. J. Surg. Oncol. 94, 68-80; Dimitroff, C. J., Pera, P., Dall'Olio, F., Matta, K. L., Chandrasekaran, E. V., Lau, J. T., and Bernacki, R. J. (1999) Cell surface n-acetylneuraminic acid alpha2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biochem. Biophys. Res. Commun. 256, 631-636; and Arcinas, A., Yen, T. Y., Kebebew, E., and Macher, B. A. (2009) Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res. 8, 3958-3968). Equally, it has been well established that tumor-associated inflammation through the release of pro-inflammatory cytokines is a common cause of reduced hepatic drug metabolism and increased toxicity in advanced cancer patients being treated with cytotoxic chemotherapies. However, little is known about the impact of bearing a tumor (and downstream effects like inflammation) on liver membrane protein glycosylation. In this study, proteomic and glycomic analyses were used in combination to determine whether liver membrane protein glycosylation was affected in mice bearing the Engelbreth-Holm Swarm sarcoma. Peptide IPG-IEF and label-free quantitation determined that many enzymes involved in the protein glycosylation pathway specifically; mannosidases (Man1a-I, Man1b-I and Man2a-I), mannoside N-acetylglucosaminyltransferases (Mgat-I and Mgat-II), galactosyltransferases (B3GalT-VII, B4GalT-I, B4GalT-III, C1GalT-I, C1GalT-II, and GalNT-I), and sialyltransferases (ST3Gal-I, ST6Gal-I, and ST6GalNAc-VI) were up-regulated in all livers of tumor-bearing mice (n = 3) compared with nontumor bearing controls (n = 3). In addition, many cell surface lectins: Sialoadhesin-1 (Siglec-1), C-type lectin family 4f (Kupffer cell receptor), and Galactose-binding lectin 9 (Galectin-9) were determined to be up-regulated in the liver of tumor-bearing compared with control mice. Global glycan analysis identified seven N-glycans and two O-glycans that had changed on the liver membrane proteins derived from tumor-bearing mice. Interestingly, α (2,3) sialic acid was found to be up-regulated on the liver membrane of tumor-bearing mice, which reflected the increased expression of its associated sialyltransferase and lectin receptor (siglec-1). The overall increased sialylation on the liver membrane of Engelbreth-Holm Swarm bearing mice correlates with the increased expression of their associated glycosyltransferases and suggests that glycosylation of proteins in the liver plays a role in tumor-induced liver inflammation.


Assuntos
Galactosiltransferases/metabolismo , Glicômica/métodos , Inflamação/metabolismo , Fígado/metabolismo , Manosidases/metabolismo , Neoplasias/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sarcoma Experimental/metabolismo , Sialiltransferases/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Galactosiltransferases/genética , Regulação Neoplásica da Expressão Gênica , Glicosilação , Inflamação/etiologia , Inflamação/genética , Lectinas/genética , Lectinas/metabolismo , Fígado/citologia , Masculino , Manosidases/genética , Camundongos , Camundongos Transgênicos , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Transplante de Neoplasias , Neoplasias/complicações , Neoplasias/genética , Polissacarídeos/genética , Polissacarídeos/metabolismo , Proteoma/genética , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Sarcoma Experimental/complicações , Sarcoma Experimental/genética , Sialiltransferases/genética
10.
Adv Drug Deliv Rev ; 196: 114777, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931346

RESUMO

Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Organoides/patologia
11.
Mol Cancer Ther ; 22(12): 1413-1421, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683275

RESUMO

Diffuse intrinsic pontine gliomas (DIPG) are an incurable childhood brain cancer for which novel treatments are needed. DIPGs are characterized by a mutation in the H3 histone (H3K27M), resulting in loss of H3K27 methylation and global gene dysregulation. TRX-E-009-1 is a novel anticancer agent with preclinical activity demonstrated against a range of cancers. We examined the antitumor activity of TRX-E-009-1 against DIPG neurosphere cultures and observed tumor-specific activity with IC50s ranging from 20 to 100 nmol/L, whereas no activity was observed against normal human astrocyte cells. TRX-E-009-1 exerted its anti-proliferative effect through the induction of apoptotic pathways, with marked increases in cleaved caspase 3 and cleaved PARP levels, while also restoring histone H3K27me3 methylation. Co-administration of TRX-E-009-1 and the histone deacetylase (HDAC) inhibitor SAHA extended survival in DIPG orthotopic animal models. This antitumor effect was further enhanced with irradiation. Our findings indicate that TRX-E-009-1, combined with HDAC inhibition, represents a novel, potent therapy for children with DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Animais , Humanos , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Histona Desacetilases/genética , Linhagem Celular Tumoral , Mutação , Microtúbulos/metabolismo
12.
Front Oncol ; 13: 1123492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937401

RESUMO

Introduction: Ependymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion. Methods: Patient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. Results: Both patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo. Discussion: Others who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.

13.
Biomedicines ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38001908

RESUMO

Genetic histone variants have been implicated in cancer development and progression. Mutations affecting the histone 3 (H3) family, H3.1 (encoded by HIST1H3B and HIST1H3C) and H3.3 (encoded by H3F3A), are mainly associated with pediatric brain cancers. While considered poor prognostic brain cancer biomarkers in children, more recent studies have reported H3 alterations in adult brain cancer as well. Here, we established reliable droplet digital PCR based assays to detect three histone mutations (H3.3-K27M, H3.3-G34R, and H3.1-K27M) primarily linked to childhood brain cancer. We demonstrate the utility of our assays for sensitively detecting these mutations in cell-free DNA released from cultured diffuse intrinsic pontine glioma (DIPG) cells and in the cerebral spinal fluid of a pediatric patient with DIPG. We further screened tumor tissue DNA from 89 adult patients with glioma and 1 with diffuse hemispheric glioma from Southwestern Sydney, Australia, an ethnically diverse region, for these three mutations. No histone mutations were detected in adult glioma tissue, while H3.3-G34R presence was confirmed in the diffuse hemispheric glioma patient.

14.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480151

RESUMO

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

15.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523146

RESUMO

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Criança , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos
16.
Cancer Cell ; 41(4): 660-677.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001527

RESUMO

Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources. Herein, we establish a single-site collection of 261 cell lines, including 224 pediatric cell lines representing 18 distinct extracranial and brain childhood tumor types. We subjected 182 cell lines to multi-omics analyses (DNA sequencing, RNA sequencing, DNA methylation), and in parallel performed pharmacological and genetic CRISPR-Cas9 loss-of-function screens to identify pediatric-specific treatment opportunities and biomarkers. Our work provides insight into specific pathway vulnerabilities in molecularly defined pediatric tumor classes and uncovers biomarker-linked therapeutic opportunities of clinical relevance. Cell line data and resources are provided in an open access portal.


Assuntos
Neoplasias Encefálicas , Criança , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
17.
Theranostics ; 12(10): 4734-4752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832071

RESUMO

Despite significant advances in research, the prognosis for both primary and secondary brain cancers remains poor. The blood-brain barrier (BBB) is a complex and unique semi-permeable membrane that serves as a protective structure to maintain homeostasis within the brain. However, it presents a significant challenge for the delivery of therapeutics into the brain and tumor. Some brain tumors are known to compromise BBB integrity, producing a highly heterogeneous vasculature known as the blood-tumor-barrier (BTB). Identifying strategies to bypass these obstacles to improve the penetrability of anticancer therapeutics has been the focus of research in this area. In this review, we discuss the strategies that have been investigated to evade or alter the cellular and molecular barriers of both the BBB and the BTB and detail the methods currently under preclinical or clinical investigation, including molecular, biological, and physical processes to overcome the BBB or BTB. Increased understanding of the BBB and BTB and the current methods of overcoming these barriers will enable the development of new and more effective treatment strategies for brain tumors.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Transporte Biológico , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Humanos
18.
Cancer Res ; 82(17): 2980-3001, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35802025

RESUMO

Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE: This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.


Assuntos
Fatores de Transcrição Forkhead , Neoplasias , Adulto , Carcinogênese/genética , Proliferação de Células , Criança , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Neoplasias/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Ativação Transcricional
19.
EMBO Mol Med ; 14(4): e14608, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927798

RESUMO

Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Criança , Modelos Animais de Doenças , Genômica/métodos , Humanos , Neoplasias/patologia , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancers (Basel) ; 13(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34944870

RESUMO

Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA