Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 616(7956): 332-338, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020020

RESUMO

Biomolecular condensates formed by phase separation can compartmentalize and regulate cellular processes1,2. Emerging evidence has suggested that membraneless subcellular compartments in virus-infected cells form by phase separation3-8. Although linked to several viral processes3-5,9,10, evidence that phase separation contributes functionally to the assembly of progeny particles in infected cells is lacking. Here we show that phase separation of the human adenovirus 52-kDa protein has a critical role in the coordinated assembly of infectious progeny particles. We demonstrate that the 52-kDa protein is essential for the organization of viral structural proteins into biomolecular condensates. This organization regulates viral assembly such that capsid assembly is coordinated with the provision of viral genomes needed to produce complete packaged particles. We show that this function is governed by the molecular grammar of an intrinsically disordered region of the 52-kDa protein, and that failure to form condensates or to recruit viral factors that are critical for assembly results in failed packaging and assembly of only non-infectious particles. Our findings identify essential requirements for coordinated assembly of progeny particles and demonstrate that phase separation of a viral protein is critical for production of infectious progeny during adenovirus infection.


Assuntos
Adenovírus Humanos , Condensados Biomoleculares , Proteínas Virais , Humanos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Adenovírus Humanos/química , Adenovírus Humanos/crescimento & desenvolvimento , Adenovírus Humanos/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo
2.
PLoS Biol ; 22(3): e3002529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442090

RESUMO

At the core of organelle functions lies their ability and need to form dynamic organelle-organelle networks that drive intracellular communication and coordination of cellular pathways. These networks are facilitated by membrane contact sites (MCSs) that promote both intra-organelle and inter-organelle communication. Given their multiple functions, MCSs and the proteins that form them are commonly co-opted by viruses during infection to promote viral replication. This Essay discusses mechanisms acquired by diverse human viruses to regulate MCS functions in either proviral processes or host defense. It also examines techniques used for examining MCSs in the context of viral infections.


Assuntos
Membranas Mitocondriais , Provírus , Humanos , Replicação Viral , Organelas
3.
Breast Cancer Res Treat ; 206(3): 625-636, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888796

RESUMO

PURPOSE: Leptomeningeal disease (LMD) is a devastating complication of metastatic breast cancer (MBC). It is critical to better understand the risk factors, natural history, and treatment outcomes, including patients in a modern cohort. METHODS: In this single center retrospective cohort study, we identified patients with MBC and LMD who received care from 2000 to 2024 and abstracted key clinical, treatment, and survival data. RESULTS: We identified 111 patients with MBC and LMD, including patients with the following subtypes: HR+/HER2- (n = 53, 47.7%), HER2+ (n = 30, 27.0%), and triple negative breast cancer (TNBC; n = 28, 25.2%). Median time from the diagnosis of MBC to LMD was 16.4 months (range 0-101.3 months). After the diagnosis of LMD, most patients received systemic therapy (n = 66, 59.5%) and/or central nervous system (CNS)-directed therapy (n = 94, 84.7%) including intrathecal therapy (n = 42, 37.8%) and/or CNS-directed radiation therapy (n = 70, 63.1%). In all patients, median overall survival (OS) from the diagnosis of LMD to death was 4.1 months (range 0.1-78.1 months) and varied by subtype, with HR+/HER2- or HER2+ MBC patients living longer than those with TNBC (4.2 and 6.8 months respectively vs. 2.0 months, p < 0.01, HR 2.15, 95% CI 1.36-3.39). Patients who received CNS-directed therapy lived longer than those who did not (4.2 vs. 1.3, p = 0.02 HR 0.54, 0.32-0.91). Patients diagnosed with LMD from 2015 to 2024 lived longer than those diagnosed from 2000 to 2014 (6.4 vs. 2.9 months, p = 0.04, HR 0.67, 95% CI 0.46-0.99). On multivariable analysis, having TNBC was associated with shorter OS from time of LMD to death (p = 0.004, HR 2.03, 95% CI 1.25-3.30). CONCLUSION: This is one of the largest case series of patients with MBC and LMD. Patients diagnosed with LMD from 2015 to 2024 lived longer than those diagnosed from 2000 to 2014, although median OS was short overall. Patients with TNBC and LMD had particularly short OS. Novel therapeutic strategies for LMD remain an area of unmet clinical need.


Assuntos
Neoplasias da Mama , Neoplasias Meníngeas , Humanos , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Neoplasias da Mama/mortalidade , Neoplasias Meníngeas/secundário , Neoplasias Meníngeas/terapia , Neoplasias Meníngeas/mortalidade , Idoso de 80 Anos ou mais , Carcinomatose Meníngea/secundário , Carcinomatose Meníngea/terapia , Carcinomatose Meníngea/mortalidade , Receptor ErbB-2/metabolismo , Prognóstico
5.
Nat Commun ; 15(1): 7352, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39187492

RESUMO

The dynamic regulation of mitochondria shape via fission and fusion is critical for cellular responses to stimuli. In homeostatic cells, two modes of mitochondrial fission, midzone and peripheral, provide a decision fork between either proliferation or clearance of mitochondria. However, the relationship between specific mitochondria shapes and functions remains unclear in many biological contexts. While commonly associated with decreased bioenergetics, fragmented mitochondria paradoxically exhibit elevated respiration in several disease states, including infection with the prevalent pathogen human cytomegalovirus (HCMV) and metastatic melanoma. Here, incorporating super-resolution microscopy with mass spectrometry and metabolic assays, we use HCMV infection to establish a molecular mechanism for maintaining respiration within a fragmented mitochondria population. We establish that HCMV induces fragmentation through peripheral mitochondrial fission coupled with suppression of mitochondria fusion. Unlike uninfected cells, the progeny of peripheral fission enter mitochondria-ER encapsulations (MENCs) where they are protected from degradation and bioenergetically stabilized during infection. MENCs also stabilize pro-viral inter-mitochondria contacts (IMCs), which electrochemically link mitochondria and promote respiration. Demonstrating a broader relevance, we show that the fragmented mitochondria within metastatic melanoma cells also form MENCs. Our findings establish a mechanism where mitochondria fragmentation can promote increased respiration, a feature relevant in the context of human diseases.


Assuntos
Citomegalovirus , Retículo Endoplasmático , Metabolismo Energético , Mitocôndrias , Dinâmica Mitocondrial , Humanos , Mitocôndrias/metabolismo , Citomegalovirus/fisiologia , Retículo Endoplasmático/metabolismo , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Melanoma/metabolismo , Melanoma/patologia , Melanoma/virologia , Linhagem Celular Tumoral
6.
Nat Commun ; 13(1): 4720, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953480

RESUMO

Membrane contact sites (MCSs) link organelles to coordinate cellular functions across space and time. Although viruses remodel organelles for their replication cycles, MCSs remain largely unexplored during infections. Here, we design a targeted proteomics platform for measuring MCS proteins at all organelles simultaneously and define functional virus-driven MCS alterations by the ancient beta-herpesvirus human cytomegalovirus (HCMV). Integration with super-resolution microscopy and comparisons to herpes simplex virus (HSV-1), Influenza A, and beta-coronavirus HCoV-OC43 infections reveals time-sensitive contact regulation that allows switching anti- to pro-viral organelle functions. We uncover a stabilized mitochondria-ER encapsulation structure (MENC). As HCMV infection progresses, MENCs become the predominant mitochondria-ER contact phenotype and sequentially recruit the tethering partners VAP-B and PTPIP51, supporting virus production. However, premature ER-mitochondria tethering activates STING and interferon response, priming cells against infection. At peroxisomes, ACBD5-mediated ER contacts balance peroxisome proliferation versus membrane expansion, with ACBD5 impacting the titers of each virus tested.


Assuntos
Infecções por Citomegalovirus , Herpes Simples , Infecções por Herpesviridae , Vírus , Citomegalovirus/fisiologia , Infecções por Herpesviridae/metabolismo , Humanos , Organelas , Peroxissomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA