Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 625(7994): 287-292, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200298

RESUMO

Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner-Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner-Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.

2.
J Am Chem Soc ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361889

RESUMO

Electron-rich heteroaromatic imidodiphosphorimidates (IDPis) catalyze the asymmetric Pictet-Spengler reaction of N-carbamoyl-ß-arylethylamines with high stereochemical precision. This particular class of catalysts furthermore provides a vital rate enhancement compared to related Brønsted acids. Here we present experimental studies on the underlying reaction kinetics that shed light on the specific origins of rate acceleration. Analysis of Hammett plots, kinetic isotope effects, reaction orders, Eyring plots, and isotopic scrambling experiments, allowed us to gather insights into the molecular interactions between the chiral Brønsted acid and catalytically formed intermediates. Based on rigorously determined pKa values as well as the experimental evidence, we propose that attractive intermolecular forces offered by electron-rich π-surfaces of the chiral counteranion enthalpically stabilize cationic intermediates and transition states by way of cation-π interactions. This view is furthermore supported by in-depth density functional theory calculations. Our deepened understanding of the reaction mechanism allowed us to develop a method for accessing 1-aryltetrahydroisoquinolines from aromatic dimethyl acetals, a substrate class that was thus far inaccessible via catalytic asymmetric Pictet-Spengler reactions.

3.
Chemistry ; 30(10): e202302837, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38010242

RESUMO

Machine learning has permeated all fields of research, including chemistry, and is now an integral part of the design of novel compounds with desired properties. In the field of asymmetric catalysis, the preference still lies with models based on a physical understanding of the catalysis phenomenon and the electronic and steric properties of catalysts. However, such models require quantum chemical calculations and are thus limited by their computational cost. Here, we highlight the recent advances in modeling catalyst selectivity by using the 2D structures of catalysts and substrates. While these have a less explicit mechanistic connection to the modeled property, 2D descriptors, such as topological indices, molecular fingerprints, and fragments, offer the tremendous advantages of low cost and high speed of calculations. This makes them optimal for the in-silico screening of large amounts of data. We provide an overview of common quantitative structure-property relationship workflow, model building and validation techniques, applications of these methodologies in asymmetric catalysis design, and an outlook on improving the understanding of 2D-based models.

4.
J Am Chem Soc ; 145(16): 8788-8793, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043821

RESUMO

Despite recent advancements in the development of catalytic asymmetric electrophile induced lactonization reactions of olefinic carboxylic acids, the archetypical hydrolactonization has long remained an unsolved and well-recognized challenge. Here, we report the realization of a catalytic asymmetric hydrolactonization using a confined imidodiphosphorimidate (IDPi) Brønsted acid catalyst. The method is operationally simple, scalable, and compatible with a wide variety of substrates. Its potential is showcased with concise syntheses of the sesquiterpenes (-)-boivinianin A and (+)-gossonorol. Through in-depth physicochemical and DFT analyses, we derive a nuanced picture of the mechanism and enantioselectivity of this reaction.

5.
J Am Chem Soc ; 145(9): 4994-5000, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826435

RESUMO

Chiral organosilanes do not exist in nature and are therefore absent from the "chiral pool". As a consequence, synthetic approaches toward enantiopure silanes, stereogenic at silicon, are rather limited. While catalytic asymmetric desymmetrization reactions of symmetric organosilicon compounds have been developed, the utilization of racemic silanes in a dynamic kinetic asymmetric transformation (DYKAT) or dynamic kinetic resolution (DKR) would significantly expand the breadth of accessible Si-stereogenic compounds. We now report a DYKAT of racemic allyl silanes enabled by strong and confined imidodiphosphorimidate (IDPi) catalysts, providing access to Si-stereogenic silyl ethers. The products of this reaction are easily converted into useful enantiopure monohydrosilanes. We propose a spectroscopically and experimentally supported mechanism involving the epimerization of a catalyst-bound intermediate.

6.
Angew Chem Int Ed Engl ; 62(11): e202218659, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688354

RESUMO

Catalyst optimization processes typically rely on inductive and qualitative assumptions of chemists based on screening data. While machine learning models using molecular properties or calculated 3D structures enable quantitative data evaluation, costly quantum chemical calculations are often required. In contrast, readily available binary fingerprint descriptors are time- and cost-efficient, but their predictive performance remains insufficient. Here, we describe a machine learning model based on fragment descriptors, which are fine-tuned for asymmetric catalysis and represent cyclic or polyaromatic hydrocarbons, enabling robust and efficient virtual screening. Using training data with only moderate selectivities, we designed theoretically and validated experimentally new catalysts showing higher selectivities in a challenging asymmetric tetrahydropyran synthesis.

7.
J Am Chem Soc ; 144(23): 10156-10161, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649270

RESUMO

Functionalized enantiopure organosilanes are important building blocks with applications in various fields of chemistry; nevertheless, asymmetric synthetic methods for their preparation are rare. Here we report the first organocatalytic enantioselective synthesis of tertiary silyl ethers possessing "central chirality" on silicon. The reaction proceeds via a desymmetrizing carbon-carbon bond forming silicon-hydrogen exchange reaction of symmetrical bis(methallyl)silanes with phenols using newly developed imidodiphosphorimidate (IDPi) catalysts. A variety of enantiopure silyl ethers was obtained in high yields with good chemo- and enantioselectivities and could be readily derivatized to several useful chiral silicon compounds, leveraging the olefin functionality and the leaving group nature of the phenoxy substituent.


Assuntos
Éteres , Carbono , Éteres/síntese química , Silício , Estereoisomerismo
8.
J Am Chem Soc ; 143(2): 675-680, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33399449

RESUMO

In recent years, several organocatalytic asymmetric hydroarylations of activated, electron-poor olefins with activated, electron-rich arenes have been described. In contrast, only a few approaches that can handle unactivated, electronically neutral olefins have been reported and invariably require transition metal catalysts. Here we show how an efficient and highly enantioselective catalytic asymmetric intramolecular hydroarylation of aliphatic and aromatic olefins with indoles can be realized using strong and confined IDPi Brønsted acid catalysts. This unprecedented transformation is enabled by tertiary carbocation formation and establishes quaternary stereogenic centers in excellent enantioselectivity and with a broad substrate scope that includes an aliphatic iodide, an azide, and an alkyl boronate, which can be further elaborated into bioactive molecules.

9.
J Am Chem Soc ; 143(36): 14475-14481, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34436899

RESUMO

Protected aldols (i.e., true aldols derived from aldehydes) with either syn- or anti- stereochemistry are versatile intermediates in many oligopropionate syntheses. Traditional stereoselective approaches to such aldols typically require several nonstrategic operations. Here we report two highly enantioselective and diastereoselective catalytic Mukaiyama aldol reactions of the TBS- or TES- enolsilanes of propionaldehyde with aromatic aldehydes. Our reactions directly deliver valuable silyl protected propionaldehyde aldols in a catalyst controlled manner, either as syn- or anti- isomer. We have identified a privileged IDPi catalyst motif that is tailored for controlling these aldolizations with exceptional selectivities. We demonstrate how a single atom modification in the inner core of the IDPi catalyst, replacing a CF3-group with a CF2H-group, leads to a dramatic switch in enantiofacial differentiation of the aldehyde. The origin of this remarkable effect was attributed to tightening of the catalytic cavity via unconventional C-H hydrogen bonding of the CF2H group.

10.
J Am Chem Soc ; 138(44): 14740-14749, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27779872

RESUMO

The heterodimerizing self-assembly between a phosphoric acid catalyst and a carboxylic acid has recently been established as a new activation mode in Brønsted acid catalysis. In this article, we present a comprehensive mechanistic investigation on this activation principle, which eventually led to its elucidation. Detailed studies are reported, including computational investigations on the supramolecular heterodimer, kinetic studies on the catalytic cycle, and a thorough analysis of transition states by DFT calculations for the rationalization of the catalyst structure-selectivity relationship. On the basis of these investigations, we developed a kinetic resolution of racemic epoxides, which proceeds with high selectivity (up to s = 93), giving the unreacted epoxides and the corresponding protected 1,2-diols in high enantiopurity. Moreover, this approach could be advanced to an unprecedented stereodivergent resolution of racemic α-chiral carboxylic acids, thus providing access to a variety of enantiopure nonsteroidal anti-inflammatory drugs and to α-amino acid derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA