Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Virol ; 98(3): e0163823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353536

RESUMO

Reverse genetics systems have played a central role in developing recombinant viruses for a wide spectrum of virus research. The circular polymerase extension reaction (CPER) method has been applied to studying positive-strand RNA viruses, allowing researchers to bypass molecular cloning of viral cDNA clones and thus leading to the rapid generation of recombinant viruses. However, thus far, the CPER protocol has only been established using cap-dependent RNA viruses. Here, we demonstrate that a modified version of the CPER method can be successfully applied to positive-strand RNA viruses that use cap-independent, internal ribosomal entry site (IRES)-mediated translation. As a proof-of-concept, we employed mammalian viruses with different types (classes I, II, and III) of IRES to optimize the CPER method. Using the hepatitis C virus (HCV, class III), we found that inclusion in the CPER assembly of an RNA polymerase I promoter and terminator, instead of those from polymerase II, allowed greater viral production. This approach was also successful in generating recombinant bovine viral diarrhea virus (class III) following transfection of MDBK/293T co-cultures to overcome low transfection efficiency. In addition, we successfully generated the recombinant viruses from clinical specimens. Our modified CPER could be used for producing hepatitis A virus (HAV, type I) as well as de novo generation of encephalomyocarditis virus (type II). Finally, we generated recombinant HCV and HAV reporter viruses that exhibited replication comparable to that of the wild-type parental viruses. The recombinant HAV reporter virus helped evaluate antivirals. Taking the findings together, this study offers methodological advances in virology. IMPORTANCE: The lack of versatility of reverse genetics systems remains a bottleneck in viral research. Especially when (re-)emerging viruses reach pandemic levels, rapid characterization and establishment of effective countermeasures using recombinant viruses are beneficial in disease control. Indeed, numerous studies have attempted to establish and improve the methods. The circular polymerase extension reaction (CPER) method has overcome major obstacles in generating recombinant viruses. However, this method has not yet been examined for positive-strand RNA viruses that use cap-independent, internal ribosome entry site-mediated translation. Here, we engineered a suitable gene cassette to expand the CPER method for all positive-strand RNA viruses. Furthermore, we overcame the difficulty of generating recombinant viruses because of low transfection efficiency. Using this modified method, we also successfully generated reporter viruses and recombinant viruses from a field sample without virus isolation. Taking these findings together, our adapted methodology is an innovative technology that could help advance virologic research.


Assuntos
Hepatite C , Biossíntese de Proteínas , Genética Reversa , Animais , Hepatite C/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Mamíferos/genética , Vírus de RNA de Cadeia Positiva/genética , Vírus de RNA de Cadeia Positiva/metabolismo , Genética Reversa/métodos , RNA Viral/genética
2.
Microbiol Immunol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961765

RESUMO

In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.

3.
Antonie Van Leeuwenhoek ; 116(10): 1037-1055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37596503

RESUMO

Some heterotrophic microorganisms carry out nitrification to produce nitrite and nitrate from pyruvic oxime. Pyruvic oxime dioxygenase (POD) is an enzyme that catalyzes the degradation of pyruvic oxime to pyruvate and nitrite from the heterotrophic nitrifying bacterium Alcaligenes faecalis. Sequence similarity searches revealed the presence of genes encoding proteins homologous to A. faecalis POD in bacteria of the phyla Proteobacteria and Actinobacteria and in fungi of the phylum Ascomycota, and their gene products were confirmed to have POD activity in recombinant experiments. Phylogenetic analysis further classified these POD homologs into three groups. Group 1 POD is mainly found in heterotrophic nitrifying Betaproteobacteria and fungi, and is assumed to be involved in heterotrophic nitrification. It is not clear whether group 2 POD, found mainly in species of the Gammaproteobacteria and Actinobacteria, and group 3 POD, found simultaneously with group 1 POD, are involved in heterotrophic nitrification. The genes of bacterial group 1 POD comprised a single transcription unit with the genes related to the metabolism of aromatic compounds, and many of the genes group 2 POD consisted of a single transcription unit with the gene encoding the protein homologous to 4-hydroxy-tetrahydrodipicolinate synthase (DapA). LysR- or Cro/CI-type regulatory genes were present adjacent to or in the vicinity of these POD gene clusters. POD may be involved not only in nitrification, but also in certain metabolic processes whose functions are currently unknown, in coordination with members of gene clusters.


Assuntos
Actinobacteria , Dioxigenases , Dioxigenases/genética , Filogenia , Nitritos , Nitrificação
5.
Sci Rep ; 14(1): 12176, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806644

RESUMO

Although the mRNA SARS-CoV-2 vaccine has improved the mortality rate in the general population, its efficacy against rapidly mutating virus strains, especially in kidney transplant recipients, remains unclear. We examined the anti-SARS-CoV-2 spike protein IgG antibody and neutralizing antibody titers and cellular immunity against B.1.1, BA.1, and BA.5 antigens in 73 uninfected kidney recipients and 16 uninfected healthy controls who received three doses of an mRNA SARS-CoV-2 vaccine. The IgG antibody titers were significantly lower in recipients than in healthy controls. Similarly, neutralizing antibody titers against three viral variants were significantly lower in recipients. When the virus was mutated, the neutralizing antibody titers decreased significantly in both groups. In cellular immunity analysis, the number of spike-specific CD8 + non-naïve T cells against three variants significantly decreased in recipients. Conversely, the frequency of spike-specific Th2 CD4 + T-cells in recipients was higher than that in healthy controls. Nineteen recipients and six healthy controls also received a bivalent omicron-containing booster vaccine, leading to increase IgG and neutralizing antibody titers in both groups. After that, eleven recipients and five healthy controls received XBB.1.5 monovalent vaccines, increasing the neutralizing antibody titers against not only XBB.1.5, but also EG.5.1 and BA.2.86 antigens in kidney recipients. Although kidney recipients did not gain sufficient immunity against Omicron BA.5 with the third dose of vaccine, humoral response against mutant SARS-CoV-2 lineages significantly increased after bivalent Omicron-containing booster vaccine and the XBB.1.5 monovalent vaccine. Therefore, it is important for kidney recipients to continue to administer updated vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunoglobulina G , Transplante de Rim , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Transplante de Rim/efeitos adversos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Feminino , Masculino , Pessoa de Meia-Idade , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Adulto , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunidade Celular , Vacinação/métodos , Transplantados , Idoso , Imunização Secundária
6.
iScience ; 27(5): 109647, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638572

RESUMO

Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. Because the gene size of RNA viruses is typically small, NanoLuc is the primary choice for accommodation within viral genome. However, NanoLuc/Furimazine and also the conventional firefly luciferase/D-luciferin are known to exhibit relatively low tissue permeability and thus less sensitivity for visualization of deep tissue including lungs. Here, we demonstrated in vivo sufficient visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using the pair of a codon-optimized Akaluc and AkaLumine. We engineered the codon-optimized Akaluc gene possessing the similar GC ratio of SARS-CoV-2. Using the SARS-CoV-2 recombinants carrying the codon-optimized Akaluc, we visualized in vivo infection of respiratory organs, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of antivirals by monitoring changes in Akaluc signals. Overall, we offer an effective technology for monitoring viral dynamics in live animals.

7.
Cell Host Microbe ; 32(2): 170-180.e12, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38280382

RESUMO

In late 2023, several SARS-CoV-2 XBB descendants, notably EG.5.1, were predominant worldwide. However, a distinct SARS-CoV-2 lineage, the BA.2.86 variant, also emerged. BA.2.86 is phylogenetically distinct from other Omicron sublineages, accumulating over 30 amino acid mutations in its spike protein. Here, we examined the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Additionally, four clinically available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 are significantly lower than those of BA.2 both in vitro and in vivo, the attenuated pathogenicity of BA.2.86 is likely due to its decreased replication capacity. These findings uncover the features of BA.2.86, providing insights for control and treatment.


Assuntos
COVID-19 , Animais , Cricetinae , SARS-CoV-2/genética , Aminoácidos , Cinética , Mutação
8.
Sci Rep ; 11(1): 23105, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845321

RESUMO

Alcaligenes faecalis is a heterotrophic nitrifying bacterium that oxidizes ammonia and generates nitrite and nitrate. When A. faecalis was cultivated in a medium containing pyruvate and ammonia as the sole carbon and nitrogen sources, respectively, high concentrations of nitrite accumulated in the medium whose carbon/nitrogen (C/N) ratio was lower than 10 during the exponential growth phase, while the accumulation was not observed in the medium whose C/N ratio was higher than 15. Comparative transcriptome analysis was performed using nitrifying and non-nitrifying cells of A. faecalis cultivated in media whose C/N ratios were 5 and 20, respectively, to evaluate the fluctuations of gene expression during induction of heterotrophic nitrification. Expression levels of genes involved in primary metabolism did not change significantly in the cells at the exponential growth phase under both conditions. We observed a significant increase in the expression levels of four gene clusters: pod cluster containing the gene encoding pyruvic oxime dioxygenase (POD), podh cluster containing the gene encoding a POD homolog (PODh), suf cluster involved in an iron-sulfur cluster biogenesis, and dnf cluster involved in a novel hydroxylamine oxidation pathway in the nitrifying cells. Our results provide valuable insight into the biochemical mechanism of heterotrophic nitrification.


Assuntos
Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Processos Heterotróficos , Nitrificação , Amônia/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Hidroxilamina/química , Família Multigênica , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Propionatos/metabolismo , Transcriptoma
9.
Intern Med ; 59(15): 1887-1890, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321890

RESUMO

A 25-year-old woman was admitted to our hospital due to tonic convulsion with severe headache after having experienced symptoms of nausea and vomiting for a month. Brain magnetic resonance imaging showed extensive symmetrical lesions in the cortical and subcortical areas of parieto-occipital lobes and basal ganglia, consistent with typical characteristics of posterior reversible encephalopathy syndrome (PRES). Furthermore, some residual lesions in the left side of dorsal medulla oblongata and central area of the cervical spinal cord along with the presence of serum anti-aquaporin-4 antibody yielded the diagnosis of neuromyelitis optica spectrum disorder (NMOSD). We herein discuss the mechanism by which PRES may occur together with NMOSD.


Assuntos
Neuromielite Óptica/complicações , Síndrome da Leucoencefalopatia Posterior/complicações , Adulto , Aquaporina 4/sangue , Feminino , Humanos , Imageamento por Ressonância Magnética , Bulbo/patologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Síndrome da Leucoencefalopatia Posterior/patologia
10.
Sci Rep ; 7: 39991, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059164

RESUMO

Pyruvic oxime dioxygenase (POD), a key enzyme in heterotrophic nitrification, was purified from Alcaligenes faecalis, and the molecular and catalytic characteristics were reexamined. POD was purified as the homotetramer of the subunit whose molecular weight was 30,000. The deduced amino acid sequence of POD was homologous with a class II aldolase that has been regarded as the Zn(II)-dependent enzyme catalyzing aldol reactions. The recombinant protein showed weak POD activity, and was activated by reconstitution with Fe(II). Affinity and catalytic constants were estimated at 470 µM and 4.69 sec-1, respectively. The POD was inactivated by EDTA to remove bound divalent metal cations. A reconstitution experiment demonstrated that Fe(II), not Zn(II), is essential for POD activity and that Mn(II) could partially fulfill the function of Fe(II). A mutant POD with replacement of His183, corresponding to one of three Zn(II)-binding ligands in the class II aldolase, by Asn was purified as a homotetrameric protein but showed no catalytic activities. Those results suggest that the POD is homologous to class II aldolase having non-heme Fe(II) as a catalytic center instead of Zn(II). A possible mechanism of the POD reaction is discussed on the basis of that of a known Fe(II)-dependent dioxygenase.


Assuntos
Alcaligenes faecalis/enzimologia , Dioxigenases/genética , Dioxigenases/metabolismo , Ferro/metabolismo , Alcaligenes faecalis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Clonagem Molecular , Dioxigenases/antagonistas & inibidores , Dioxigenases/química , Ácido Edético/farmacologia , Frutose-Bifosfato Aldolase , Peso Molecular , Nitrificação , Filogenia , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA