Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167433

RESUMO

High-resolution electrospray mass spectra (MS and MS/MS CID) of positive ions of a series of protonated, ammoniated, and metallated molecules of cyclic N-substituted oligo-ß-(1→6)-D-glucosamines differing in cycle size and N-acyl substituents were registered and interpreted. It was shown that the main type of fragmentation is a cleavage of glycosidic bonds of a cycle, and in some cases fragmentation of amide side chains is possible. If labile fragments in substituents (e.g., carbohydrate chains) are present, a decay of the cycle and an elimination of labile fragments are of comparable possibility. It was found that in some cases rearrangements with loss of an internal carbohydrate residue (IRL), or an internal part of a side chain, are feasible.


Assuntos
Glucosamina/análogos & derivados , Glucosamina/química , Oligossacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Ciclização
2.
Molecules ; 24(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207901

RESUMO

Modern mass spectrometry, including electrospray and MALDI, is applied for analysis and structure elucidation of carbohydrates. Cyclic oligosaccharides isolated from different sources (bacteria and plants) have been known for decades and some of them (cyclodextrins and their derivatives) are widely used in drug design, as food additives, in the construction of nanomaterials, etc. The peculiarities of the first- and second-order mass spectra of cyclic oligosaccharides (natural, synthetic and their derivatives and modifications: cyclodextrins, cycloglucans, cyclofructans, cyclooligoglucosamines, etc.) are discussed in this minireview.


Assuntos
Oligossacarídeos/análise , Oligossacarídeos/química , Espectrometria de Massas em Tandem , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem/métodos
3.
J Org Chem ; 83(21): 12965-12976, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277398

RESUMO

Biotinylated hepta-, nona- and undeca-α-(1 → 3)-d-glucosides representing long oligosaccharides of α-(1 → 3)-d-glucan, one of the major components of the cell walls of the fungal pathogen Aspergillus fumigatus, were synthesized for the first time via a blockwise strategy. Convergent assembly of the α-(1 → 3)-d-glucan chains was achieved by glycosylation with oligoglucoside derivatives bearing 6- O-benzoyl groups. Those groups are capable of remote α-stereocontrolling participation, making them efficient α-directing tools even in the case of large glycosyl donors. Synthetic biotinylated oligoglucosides (and biotinylated derivatives of previously synthesized tri- and penta-α-(1 → 3)-d-glucosides) loaded on streptavidin microtiter plates were shown to be better recognized by anti-α-(1 → 3)-glucan human polyclonal antibodies and to induce higher cytokine responses upon stimulation of human peripheral blood mononuclear cells than their natural counterpart, α-(1 → 3)-d-glucan, immobilized on a conventional microtiter plate. Attachment of the synthetic oligosaccharides equipped with a hydrophilic spacer via the streptavidin-biotin pair allows better spatial presentation and control of the loading compared to the random sorption of natural α-(1 → 3)-glucan. Increase of oligoglucoside length results in their better recognition and enhancement of cytokine production. Thus, using synthetic α-(1 → 3)-glucan oligosaccharides, we developed an assay for the host immune response that is more sensitive than the assay based on native α-(1 → 3)-glucan.


Assuntos
Anticorpos Monoclonais/imunologia , Aspergillus fumigatus , Parede Celular/química , Citocinas/metabolismo , Glucanos/imunologia , Glucosídeos/síntese química , Biotinilação , Glucanos/química , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo
4.
Cell Microbiol ; 18(9): 1294-307, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27310441

RESUMO

Synthetically prepared bovine serum albumin (BSA) conjugate of linear ß-(1 → 3)-nonaglucoside ligand (G9) has been applied as a biological response immunomodulator in vivo and ex vivo. Active immunization of Balb/c mice revealed effective induction of specific humoral responses in comparison with Candida ß-D-glucan and Candida whole cells. Induced post-vaccination serum exhibited a growth-inhibition effect on the multi-azole-resistant clinical strain Candida albicans CCY 29-3-164 in experimental mucocutaneous infection ex vivo. Evaluation of immune cell proliferation and the cytotoxic potential of the G9-ligand has revealed its bioavailability and an immunostimulative effect in vaccination-sensitized Balb/c mice splenocytes and RAW 264.7 macrophages.


Assuntos
Candida albicans/imunologia , Candidíase/prevenção & controle , Polissacarídeos Fúngicos/imunologia , Animais , Anticorpos Antifúngicos/sangue , Antígenos de Fungos/imunologia , Candidíase/sangue , Candidíase/microbiologia , Contagem de Células , Proliferação de Células , Feminino , Glucosídeos/imunologia , Hifas/imunologia , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Vacinação
5.
J Org Chem ; 82(17): 8897-8908, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28748699

RESUMO

The strength of 1,3-syn-diaxial repulsion was evaluated for main types of protecting groups (alkyl, silyl, and acyl) usually used in carbohydrate chemistry. As molecular probes for this study, derivatives of isopropyl 2-O-benzyl-4,6-O-benzylidene-α-d-idopyranoside bearing allyl, acetyl, and tert-butyldiphenylsilyl (TBDPS) protecting groups at O-3 were prepared from p-methoxyphenyl d-galactopyranoside. The equilibrium between OS2 and 4C1 conformations in these compounds was investigated using 3JH,H and 3JC,H coupling constants that were determined from 1D 1H NMR and 2D J-resolved HMBC spectra in various solvents. The analysis of the corresponding coupling constants calculated using DFT/B3LYP/pcJ-1 approximation applied to conformations optimized at DFT/B3LYP/6-311++G** level supported the investigation. Proportions of conformers in the equilibrium revealed the highest repulsion between the 3-allyloxy group and the isopropoxy aglycon and its dependence on the solvent polarity. Differences in the conformational behavior of 3-O-allyl and 3-O-acetyl-α-d-idopyranoside derivatives complied with the notion that higher electron density on O-3 increased 1,3-syn-diaxial repulsion. 3-O-TBDPS derivative existed mainly in 4C1 conformation. The attenuation of the 1,3-syn-diaxial repulsive interaction indicates that TBDPS has stereoelectronic properties that may have significance in context of fixing unnatural pyranoside conformation with the help of silyl groups but have been disregarded until now.

6.
Chem Rec ; 16(1): 488-506, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26785933

RESUMO

Oligosaccharides have a variety of versatile biological effects, but unlike peptides and oligonucleotides, investigation of the roles of oligosaccharides is not easy. Since biosynthesis of oligosaccharides does not comply with direct genetic control, their isolation from natural sources and biotechnological preparation are complicated, due to the heterogeneous composition of raw carbohydrates. Oligosaccharide synthesis is needed for the establishment or confirmation of the structure of natural glycocompounds. Also, synthetically prepared, defined oligosaccharides and their derivatives are becoming increasingly important tools for many biological and immunological research projects. The key step of oligosaccharide synthesis involves glycosylation, a reaction that builds glycosidic bonds. Usually, construction of 1,2-trans-bonds is easy, and therefore, this reaction can even be included into automated syntheses. At this time, installation of the 1,2-cis-bond remains simultaneously frustrating and compelling. In our and other laboratories, a strategy of α-selective (1,2-cis) glycosylation, relying on remote anchimeric assistance with acyl groups, is studied. The state of the art in this work is summarized in this review.


Assuntos
Oligossacarídeos/síntese química , Configuração de Carboidratos , Glicosilação , Oligossacarídeos/química
7.
Proc Natl Acad Sci U S A ; 110(24): E2209-18, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716675

RESUMO

Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A ß-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.


Assuntos
Acetilglucosamina/imunologia , Anticorpos Antibacterianos/imunologia , Infecções Bacterianas/imunologia , Malária/imunologia , Micoses/imunologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Fungos/imunologia , Fungos/fisiologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Micoses/microbiologia , Micoses/prevenção & controle , Proteínas Opsonizantes/imunologia , Plasmodium berghei/imunologia , Plasmodium berghei/fisiologia , Ligação Proteica/imunologia , Staphylococcus aureus/metabolismo , Análise de Sobrevida , Fatores de Tempo
8.
Chemistry ; 21(48): 17445-52, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26448281

RESUMO

Cyclo-oligo-(1→6)-ß-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion-transport activity increased from di- to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion-transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion-selectivity sequence: Cl(-) >Br(-) >I(-) . From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed.


Assuntos
Glucosamina/química , Transporte de Íons , Nucleotídeos de Adenina , Ânions/química , Glucosamina/análogos & derivados , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Oligonucleotídeos , Oligorribonucleotídeos
9.
Chemistry ; 21(3): 1029-35, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25376936

RESUMO

3-Aminopropyl α-(1→3)-pentaglucoside, a fragment of α-(1→3)-glucan of the cell wall of Aspergillus fumigatus, has been synthesized in a blockwise approach. The application of mono- and disaccharide N-phenyltrifluoroacetimidates bearing a stereodirecting 6-O-benzoyl group was essential for stereoselective α-glucosylations. In the products, p-methoxyphenyl and levulinoyl groups served as orthogonal protecting groups for the anomeric position and 3-OH group, respectively. Their removal from shared blocks led to donors and acceptors that were used for the synthesis of pentasaccharides. Coupling of free α-(1→3)-pentaglucoside with biotin and bovine serum albumin (BSA) gave glycoconjugate tools for mycological studies. Immunization of mice with the BSA conjugate induced the generation of antibodies that recognize α-(1→3)-glucan on A. fumigatus cell wall and distinguish its morphotypes. This discovery represents a first step to the development of a diagnostic test system and a vaccine to detect and fight this life-threatening pathogen.


Assuntos
Anticorpos/imunologia , Aspergillus fumigatus/metabolismo , Glucanos/metabolismo , Glicoconjugados/síntese química , Oligossacarídeos/síntese química , Animais , Biotina/química , Biotina/imunologia , Bovinos , Parede Celular/metabolismo , Feminino , Glucanos/química , Glucanos/imunologia , Glicoconjugados/química , Glicoconjugados/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Oligossacarídeos/química , Oligossacarídeos/imunologia , Soroalbumina Bovina/química , Soroalbumina Bovina/imunologia
10.
Front Chem ; 12: 1424157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974993

RESUMO

Brucellosis is a dangerous zoonotic disease caused by bacteria of the genus Brucella. Diagnosis of brucellosis is based on the detection in animal and human sera of antibodies to the O-polysaccharide of Brucella lipopolysaccharide. The currently employed serodiagnosis of brucellosis relies on the use of the Brucella O-polysaccharide as a diagnostic antigen. However, the existence of bacterial species, which also express O-polysaccharides structurally similar to that of Brucella, may decrease the specificity of the brucellosis detection due to false-positive test results. It has been shown that the efficiency of the test can be significantly improved by using synthetic oligosaccharides that correspond to the so-called M epitope of the Brucella O-antigen. This epitope is characterized by an α-(1→3)-linkage between d-perosamine units and is unique to Brucella. Here we report on an efficient approach to the synthesis of oligosaccharides that model the M epitope of the Brucella O-polysaccharide. The approach is based on the use of the α-(1→3)-linked disaccharide thioglycoside as the key donor block. Its application allowed the straightforward assembly of a set of four protected oligosaccharides, which includes a disaccharide, two trisaccharides, and a tetrasaccharide, in five glycosylation steps. The synthesized oligosaccharides are planned to be used in the development of diagnostic tools for identifying brucellosis in humans and domestic animals, as well as a potential vaccine against it.

11.
Biomolecules ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397407

RESUMO

Lysozyme is a well-known enzyme found in many biological fluids which plays an important role in the antibacterial protection of humans and animals. Lysozyme assays are used for the diagnosis of a number of diseases and utilized in immunohistochemistry, genetic and cellular engineering studies. The assaying methods are divided into two categories measuring either the concentration of lysozyme as a protein or its activity as an enzyme. While the first category of methods traditionally uses an enzyme-linked immunosorbent assay (ELISA), the methods for the determination of the enzymatic activity of lysozyme use either live bacteria, which is rather inconvenient, or natural peptidoglycans of high heterogeneity and variability, which leads to the low reproducibility of the assay results. In this work, we propose the use of a chemically synthesized substrate of a strictly defined structure to measure in a single experiment both the concentration of lysozyme as a protein and its enzymatic activity by means of the fluorescence polarization (FP) method. Chito-oligosaccharides of different chain lengths were fluorescently labeled and tested leading to the selection of the pentasaccharide as the optimal size tracer and the further optimization of the assay conditions for the accurate (detection limit 0.3 µM) and rapid (<30 min) determination of human lysozyme. The proposed protocol was applied to assay human lysozyme in tear samples and resulted in good correlation with the reference assay. The use of synthetic fluorescently labeled tracer, in contrast to natural peptidoglycan, in FP analysis allows for the development of a reproducible method for the determination of lysozyme activity.


Assuntos
Quitosana , Muramidase , Oligossacarídeos , Animais , Humanos , Quitosana/química , Indicadores e Reagentes/química , Muramidase/análise , Oligossacarídeos/química , Reprodutibilidade dos Testes
12.
Biosensors (Basel) ; 14(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39194633

RESUMO

Brucellosis in animals is an infectious disease caused by bacteria of the genus Brucella. Known methods for diagnosing brucellosis face some challenges, due to the difficulties in isolating and standardizing the natural brucellosis antigen. In this work, we investigated the possibility of using the fluorescence polarization assay (FPA) with synthetic glycoconjugate biosensing tracers to detect antibodies against Brucella as a new methodology for diagnosing brucellosis. Based on the received results, the synthetic fluorescein-labeled trisaccharide tracer is most effective for Brucellosis detection. This tracer is structurally related to the immune determinant fragment of the Brucella LPS buildup of N-formyl-d-perosamine units, connected via α-(1→3)-linkage at the non-reducing end and α-(1→2)-linkage at the reducing end. The sensitivity and specificity in the case of the use of trisaccharide tracer 3b were 71% and 100% (Yuden's method) and 87% and 88% (Euclidean method), respectively, which is comparable with the diagnostic efficiency of traditionally used serological methods, such as the agglutination test (AT), complement fixation test (CFT), and Rose Bengal test (RBT). Given the known advantages of FPA (e.g., speed, compactness of the equipment, and standard reagents) and the increased specificity of the developed test system, it would be appropriate to consider its widespread use for the diagnosis of brucellosis in animals, including rapid testing in the field.


Assuntos
Técnicas Biossensoriais , Brucella , Brucelose , Oligossacarídeos , Brucelose/diagnóstico , Técnicas Biossensoriais/métodos , Animais , Polarização de Fluorescência , Corantes Fluorescentes
13.
Front Immunol ; 15: 1388721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840926

RESUMO

The disaccharide (ß-D-glucopyranosyluronic acid)-(1→4)-ß-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.


Assuntos
Interleucina-17 , Vacinas Pneumocócicas , Soroalbumina Bovina , Streptococcus pneumoniae , Animais , Interleucina-17/imunologia , Interleucina-17/metabolismo , Streptococcus pneumoniae/imunologia , Camundongos , Soroalbumina Bovina/imunologia , Vacinas Pneumocócicas/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Dissacarídeos/imunologia , Cápsulas Bacterianas/imunologia , Polissacarídeos Bacterianos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Feminino , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Linfócitos Intraepiteliais/imunologia , Sorogrupo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
14.
Chemistry ; 19(28): 9272-85, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23761096

RESUMO

A family of fifteen glycoclusters based on a cyclic oligo-(1→6)-ß-D-glucosamine core has been designed as potential inhibitors of the bacterial lectin LecA with various valencies (from 2 to 4) and linkers. Evaluation of their binding properties towards LecA has been performed by a combination of hemagglutination inhibition assays (HIA), enzyme-linked lectin assays (ELLA), and isothermal titration microcalorimetry (ITC). Divalent ligands displayed dissociation constants in the sub-micromolar range and tetravalent ligands displayed low nanomolar affinities for this lectin. The influence of the linker could also be demonstrated; aromatic moieties are the best scaffolds for binding to the lectin. The affinities observed in vitro were then correlated with molecular models to rationalize the possible binding modes of these glycoclusters with the bacterial lectin.


Assuntos
Adesinas Bacterianas/química , Glucosamina/análogos & derivados , Glucosamina/química , Glicoconjugados/síntese química , Pseudomonas aeruginosa/química , Glicoconjugados/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica
15.
FEMS Yeast Res ; 13(7): 659-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23859640

RESUMO

The immunobiological efficacy of synthetically prepared mannooligosaccharides and a glucooligosaccharide mimicking the structure of Candida albicans cell wall glycans was assessed in vivo and in vitro to exploit immune responses. The exposure of mice splenocytes to BSA-based conjugates of synthetic oligomannosides and oligoglucoside revealed intense influence on T-cell subset polarization. The conjugates biased the immune responses towards Th1 and Th17 with respect to the prevalence of interferon-gamma (IFN-γ) and interleukin (IL)-17 (IL-17) over IL-4 and IL-10 levels. The inflammatory activity of the conjugates has been evaluated based on the induction of pro-inflammatory cytokines. Postvaccination, antimannooligosaccharide and antiglucooligosaccharide antisera were subjected to an evaluation of the structure-immunomodulation activity relationship. Clinical isolates of C. albicans CCY 29-3-32 and C. albicans CCY 29-3-164 were applied to study interactions between Candida cells and anti-oligosaccharide antibodies. In situ recognition of parietal oligomannosyl and oligoglucosyl sequences in C. albicans cell wall by the antisera raised against BSA-based conjugates of synthetic oligomannosides and oligoglucoside revealed the effective recognition of specific distribution of natural oligosaccharide sequences in the cell wall of C. albicans serotype A. With respect to these results, it can be concluded that new, synthetically prepared oligosaccharides mimicking Candida cell wall structures represent prospective immunobiologically effective components for further immunopharmacologically relevant Candida vaccine design.


Assuntos
Antígenos de Fungos/imunologia , Candida albicans/imunologia , Parede Celular/imunologia , Interações Hospedeiro-Patógeno , Oligossacarídeos/imunologia , Animais , Anticorpos Antifúngicos/imunologia , Candida albicans/química , Parede Celular/química , Citocinas/metabolismo , Camundongos , Oligossacarídeos/síntese química , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
16.
J Am Chem Soc ; 134(1): 426-35, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22087768

RESUMO

The human natural killer cell carbohydrate, HNK-1, plays function-conducive roles in peripheral nerve regeneration and synaptic plasticity. It is also the target of autoantibodies in polyneuropathies. It is thus important to synthesize structurally related HNK-1 carbohydrates for optimizing its function-conducive roles, and for diagnosis and neutralization of autoantibodies in the fatal Guillain-Barré syndrome. As a first step toward these goals, we have synthesized several HNK-1 carbohydrate derivatives to assess the specificity of monoclonal HNK-1 antibodies from rodents: 2-aminoethyl glycosides of selectively O-sulfated trisaccharide corresponding to the HNK-1 antigen, its nonsulfated analogue, and modified structures containing 3-O-fucosyl or 6-O-sulfo substituents in the N-acetylglucosamine residues. These were converted, together with several related oligosaccharides, into biotin-tagged probes to analyze the precise carbohydrate specificity of two anti-HNK-1 antibodies by surface plasmon resonance that revealed a crucial role of the glucuronic acid in antibody binding. The contribution of the different oligosaccharide moieties in the interaction was shown by saturation transfer difference (STD) NMR of the complex consisting of the HNK-1 pentasaccharide and the HNK-1 412 antibody.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Antígenos CD57/química , Espectroscopia de Ressonância Magnética/métodos , Oligossacarídeos/síntese química , Oligossacarídeos/imunologia , Ressonância de Plasmônio de Superfície/métodos , Biotina/metabolismo , Antígenos CD57/imunologia , Sequência de Carboidratos , Ligantes , Dados de Sequência Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo
17.
Beilstein J Org Chem ; 8: 763-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23015825

RESUMO

Two new triterpenoid saponins 1 and 2 were isolated from the methanol extract of the roots of Acanthophyllum gypsophiloides Regel. These saponins have quillaic acid or gypsogenin moieties as an aglycon, and both bear similar sets of two oligosaccharide chains, which are 3-O-linked to the triterpenoid part trisaccharide α-L-Arap-(1→3)-[α-D-Galp-(1→2)]-ß-D-GlcpA and pentasaccharide ß-D-Xylp-(1→3)-ß-D-Xylp-(1→3)-α-L-Rhap-(1→2)-[ß-D-Quip-(1→4)]-ß-D-Fucp connected through an ester linkage to C-28. The structures of the obtained saponins were elucidated by a combination of mass spectrometry and 2D NMR spectroscopy. A study of acute toxicity, hemolytic, anti-inflammatory, immunoadjuvant and antifungal activity was carried out. Both saponins 1 and 2 were shown to exhibit immunoadjuvant properties within the vaccine composition with keyhole limpet hemocyanin-based immunogen. The availability of saponins 1 and 2 as individual pure compounds from the extract of the roots of A. gypsophiloides makes it a prospective source of immunoactive agents.

18.
Carbohydr Res ; 511: 108476, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800752

RESUMO

A linear tetramer of ß-(1 â†’ 6)-linked 3-azido-3-deoxy-d-allose containing glycosyl donor and glycosyl acceptor functions in the terminal monosaccharide units was prepared starting from 3-azido-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose. Cyclization of the linear tetramer under glycosylation conditions afforded the corresponding cyclic tetrasaccharide in 77% yield; its deprotection and reduction of the azido groups resulted in the formation of the cyclic tetramer of 3-amino-3-deoxy-d-allose with axial amino groups, a potential scaffold for the synthesis of tetravalent functional clusters.


Assuntos
Oligossacarídeos , Glicosilação
19.
Front Mol Biosci ; 8: 754753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966778

RESUMO

2-Aminoethyl glycoside of the pseudotetrasaccharide α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-d-Rib-ol-(5-P-2)-α-d-Galp corresponding to a repeating unit of the Streptococcus pneumoniae type 6A capsular polysaccharide has been synthesized. A suitably protected pseudotrisaccharide α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-d-Rib-ol with a free 5-OH group in the ribitol moiety and a 2-OH derivative of 2-trifluoroacetamidoethyl α-d-galactopyranoside have been efficiently prepared and then connected via a phosphate bridge using the hydrogen phosphonate procedure. Preliminary immunological evaluation of this pseudotetrasaccharide and the previously synthesized pseudotetrasaccharide corresponding to a repeating unit of the capsular polysaccharide of S. pneumoniae serotype 6B has shown that they contain epitopes specifically recognized by anti-serogroup 6 antibodies and are able to model well the corresponding capsular polysaccharides. Conjugates of the synthetic pseudotetrasaccharides with bovine serum albumin were shown to be immunogenic in mice.

20.
Infect Immun ; 78(2): 764-72, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19948836

RESUMO

Vaccines for pathogens usually target strain-specific surface antigens or toxins, and rarely is there broad antigenic specificity extending across multiple species. Protective antibodies for bacteria are usually specific for surface or capsular antigens. beta-(1-->6)-Poly-N-acetyl-d-glucosamine (PNAG) is a surface polysaccharide produced by many pathogens, including Staphylococcus aureus, Escherichia coli, Yersinia pestis, Bordetella pertussis, Acinetobacter baumannii, and others. Protective antibodies to PNAG are elicited when a deacetylated glycoform (deacetylated PNAG [dPNAG]; <30% acetate) is used in conjugate vaccines, whereas highly acetylated PNAG does not induce such antibodies. Chemical derivation of dPNAG from native PNAG is imprecise, so we synthesized both beta-(1-->6)-d-glucosamine (GlcNH(2)) and beta-(1-->6)-d-N-acetylglucosamine (GlcNAc) oligosaccharides with linkers on the reducing termini that could be activated to produce sulfhydryl groups for conjugation to bromoacetyl groups introduced onto carrier proteins. Synthetic 5-mer GlcNH(2) (5GlcNH(2)) or 9GlcNH(2) conjugated to tetanus toxoid (TT) elicited mouse antibodies that mediated opsonic killing of multiple S. aureus strains, while the antibodies that were produced in response to 5GlcNAc- or 9GlcNAc-TT did not mediate opsonic killing. Rabbit antibodies to 9GlcNH(2)-TT bound to PNAG and dPNAG antigens, mediated killing of S. aureus and E. coli, and protected against S. aureus skin abscesses and lethal E. coli peritonitis. Chemical synthesis of a series of oligoglucosamine ligands with defined differences in N acetylation allowed us to identify a conjugate vaccine formulation that generated protective immune responses to two of the most challenging bacterial pathogens. This vaccine could potentially be used to engender protective immunity to the broad range of pathogens that produce surface PNAG.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Peritonite/prevenção & controle , Infecções Cutâneas Estafilocócicas/prevenção & controle , Vacinas Conjugadas/imunologia , beta-Glucanas/imunologia , Acetilação , Animais , Anticorpos Antibacterianos/imunologia , Cápsulas Bacterianas/imunologia , Ensaio de Imunoadsorção Enzimática , Infecções por Escherichia coli/imunologia , Humanos , Camundongos , Peritonite/imunologia , Coelhos , Infecções Cutâneas Estafilocócicas/imunologia , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA