Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(14): 2842-2853, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32126771

RESUMO

The photochemical reduction of Hg(II) is an important pathway in the environmental Hg cycle because it competes with Hg methylation and potentially limits the formation of bioaccumulative methylmercury. Hg stable isotope systematics have proven to be an effective tool for investigating the transport, transformation, and bioaccumulation of Hg. The dominant cause of mass independent isotope fractionation (MIF) of Hg in nature is the photochemical reduction of various species of Hg(II). However, it is difficult to fully interpret Hg stable isotope signatures due to the lack of mechanistic information about which Hg compounds are susceptible to MIF and why. This study investigates Hg isotope fractionation during the photochemical reduction of Hg(II) complexed to organic ligands, which are representative of the available binding sites in natural dissolved organic matter. The photochemical reduction of Hg(II) in the presence of cysteine resulted in both negative and positive MIF in residual Hg(II), where the sign depended on pH and dissolved oxygen level. In the presence of serine, either nuclear volume or magnetic isotope effects were observed depending on the wavelength of light and the extent of Hg(II) complexation by serine. In the presence of ethylenediamine, MIF was negative. Our Hg stable isotope results suggest that MDF and MIF are induced at different steps in the overall photochemical reduction reaction and that MIF does not depend on the rate-determining step but instead depends on photophysical aspects of the reaction such as intersystem crossing and hyperfine coupling. The behavior of Hg isotopes reported here will allow for a better understanding of the underlying reaction mechanisms controlling the Hg isotope signatures recorded in natural samples.

2.
Environ Sci Technol ; 53(5): 2434-2440, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30727732

RESUMO

Compared to the extensive research on aquatic ecosystems, very little is known about the sources and trophic transfer of methylmercury (MeHg) in terrestrial ecosystems. In this study, we examine energy flow and trophic structure using stable carbon (δ13C) and nitrogen (δ15N) isotope ratios, respectively, and MeHg levels in basal resources and terrestrial invertebrates from four temperate forest ecosystems. We show that MeHg levels in biota increased significantly ( p < 0.01) with δ13C and δ15N at all sites, implying the importance of both microbially processed diets (with increased δ13C) and trophic level (with increased δ15N) at which organisms feed, on MeHg levels in forest floor biota. The trophic magnification slopes of MeHg (defined as the slope of log10MeHg vs δ15N) for these forest floor food webs (0.20-0.28) were not significantly different ( p > 0.05) from those observed for diverse temperate freshwater systems (0.24 ± 0.07; n = 78), demonstrating for the first time the nearly equivalent efficiencies with which MeHg moves up the food chain in these contrasting ecosystem types. Our results suggest that in situ production of MeHg within the forest floor and efficient biomagnification both elevate MeHg levels in carnivorous invertebrates in temperate forests, which can contribute to significant bioaccumulation of this neurotoxin in terrestrial apex predators.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Ecossistema , Peixes , Cadeia Alimentar , Florestas
3.
Environ Sci Technol ; 52(4): 1854-1861, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29328674

RESUMO

Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a relatively large variation in mass-dependent fractionation (δ202Hg; from -2.12 to -1.32‰) and a smaller, but significant, variation of mass-independent fractionation (Δ199Hg; from -0.35 to -0.12‰) during two years of sampling with streamflow varying from 0.003 to 7.8 L s-1. Large variations in δ202Hg occurred only during low streamflow (<0.6 L s-1), which suggest that under high streamflow conditions a peatland lagg zone between the bog (3.0 ha) and uplands (6.7 ha) becomes the dominant source of Hg in downstream waters. Further, a binary mixing model showed that except for the spring snowmelt period, Hg in streamwater from the catchment was mainly derived from dry deposition of gaseous elemental Hg (73-95%). This study demonstrates the usefulness of Hg isotopes for tracing sources of Hg deposition, which can lead to a better understanding of the biogeochemical cycling and hydrological transport of Hg in headwater catchments.


Assuntos
Mercúrio , Ecossistema , Monitoramento Ambiental , Isótopos , Isótopos de Mercúrio , Solo
4.
Environ Int ; 179: 108134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595538

RESUMO

Nanoplastic (NP) pollution is receiving increasing attention regarding its potential effects on human health. The identification and quantification of intracellular NPs are prerequisites for an accurate risk assessment, but appropriate methods are lacking. Here we present a label-free technique to simultaneously visualize and quantify the bioaccumulation of NPs based on hyperspectral imaging with enhanced dark-field microscopy (HSI-DFM). Using polystyrene NPs (PS NPs) as representative particles, the construction of a hyperspectral library was optimized first with more accurate NP identification achieved when the library was based on intracellular instead of extracellular PS NPs. The PS NPs used herein were labeled with a green fluorescent dye so that the accuracy of HSI-DFM in identifying and quantifying intracellular NPs can be evaluated, by comparing the results with those obtained by fluorescence microscopy and flow cytometry. The validation of HSI-DFM for use in determinations of the NP concentration at the single-cell level allows analyses of the accumulation kinetics of NPs in single living cells. The utility of HSI-DFM in different cell lines and with NPs differing in their chemical composition was also demonstrated. HSI-DFM therefore provides a new approach to studies of the accumulation and distribution of NPs in human cells.


Assuntos
Microplásticos , Microscopia , Humanos , Imageamento Hiperespectral , Bioacumulação , Linhagem Celular , Poliestirenos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA