Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(1): 507-515, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36524839

RESUMO

The reaction between hydroxyl radical (·OH) and cysteine (Cys) plays an important role in the redox balance of living cells. A deeper insight into this intracellular reaction modulation and process is necessary and draws great interest. A highly effective technique consists of the real-time visualization of the two bioactive species and the perception of their respective changes by using a fluorescent probe. In this study, a dual-site chemosensor SPI based on phenothiazine-cyanine was developed, which realized quantitative detection and real-time imaging of ·OH and Cys at their own fluorescence channels (·OH: λex = 485 nm, λem = 608 nm; Cys: λex = 426 nm, λem = 538 nm) without spectral crosstalk. The fluorescent sensor showed excellent anti-interference and selectivity for common biological substances, apart from the successful imaging of exogenous and endogenous ·OH and Cys. We further visualized the redox dynamic reaction and explored the correlation of ·OH and Cys generated by different inhibitors (sulfasalazine and (1S, 3R)-RSL3). Notably, the chemosensor also possesses the capacity to clearly monitor ·OH and Cys in living mice and zebrafish. This study reports on the first chemosensor to investigate the process of intracellular redox modulation and control between ·OH and Cys, which show potential to further explore some metabolic and physiological mechanisms.


Assuntos
Cisteína , Peixe-Zebra , Humanos , Camundongos , Animais , Cisteína/metabolismo , Peixe-Zebra/metabolismo , Células HeLa , Corantes Fluorescentes/metabolismo , Oxirredução
2.
Anal Chem ; 95(9): 4353-4361, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36623324

RESUMO

The intracellular delivery of exogenous substances is an essential technical means in the field of biomedical research, including cell therapy and gene editing. Although many delivery technologies and strategies are present, each technique has its own limitations. The delivery cost is usually a major limiting factor for general laboratories. In addition, simplifying the operation process and shortening the delivery time are key challenges. Here, we develop a filter paper-syringe (FPS) delivery method, a new type of cell permeation approach based on filter paper. The cells in a syringe are forced to pass through the filter paper quickly. During this process, external pressure forces the cells to collide and squeeze with the fiber matrix of the filter paper, causing the cells to deform rapidly, thereby enhancing the permeability of the cell membrane and realizing the delivery of exogenous substances. Moreover, the large gap between the fiber networks of filter paper can prevent the cells from bearing high pressure, thus maintaining high cell vitality. Results showed that the slow-speed filter paper used can realize efficient intracellular delivery of various exogenous substances, especially small molecular substances (e.g., 3-5 kDa dextran and siRNA). Meanwhile, we found that the FPS method not only does not require a lengthy operating step compared with the widely used liposomal delivery of siRNA but also that the delivery efficiency is similar. In conclusion, the FPS approach is a simple, easy-to-operate, and fast (about 2 s) delivery method and may be an attractive alternative to membrane destruction-based transfection.


Assuntos
Filtração , Membrana Celular , Transfecção
3.
Anal Chem ; 95(7): 3811-3820, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36747339

RESUMO

Interest in wearable and stretchable multifunctional sensors has grown rapidly in recent years. The sensing elements must accurately detect external stimuli to expand their applicability as sensors. However, the sensor's self-healing and adhesion to a target object have been major challenges in developing such practical and versatile devices. In this study, we prepared a hydrogel (LM-SA-PAA) composed of liquid metal (LM), sodium alginate (SA), and poly(acrylic acid) (PAA) with ultrastretchable, excellent self-healing, self-adhesive, and high-sensitivity sensing capabilities that enable the conformal contact between the sensor and skin even during dynamic movements. The excellent self-healing performance of the hydrogel stems from its double cross-linked networks, including physical and chemical cross-linked networks. The physical cross-link formed by the ionic interaction between the carboxyl groups of PAA and gallium ions provide the hydrogel with reversible autonomous repair properties, whereas the covalent bond provides the hydrogel with a stable and strong chemical network. Alginate forms a microgel shell around LM nanoparticles via the coordination of its carboxyl groups with Ga ions. In addition to offering exceptional colloidal stability, the alginate shell has sufficient polar groups, ensuring that the hydrogel adheres to diverse substrates. Based on the efficient electrical pathway provided by the LM, the hydrogel exhibited strain sensitivity and enabled the detection of various human motions and electrocardiographic monitoring. The preparation method is simple and versatile and can be used for the low-cost fabrication of multifunctional sensors, which have broad application prospects in human-machine interface compatibility and medical monitoring.

4.
Metab Brain Dis ; 38(4): 1351-1364, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905560

RESUMO

BACKGROUND: Histone deacetylase (HDAC) inhibitor-based therapeutic drug tolerance is a major obstacle to glioblastoma (GBM) treatment. Meanwhile, non-coding RNAs have been reported to be involved in the regulation of HDAC inhibitor (SAHA) tolerance in some human tumors. However, the relationship between circular RNAs (circRNAs) and SAHA tolerance is still unknown. Herein, we explored the role and mechanism of circ_0000741 on SAHA tolerance in GBM. METHODS: Circ_0000741, microRNA-379-5p (miR-379-5p), and tripartite motif-containing 14 (TRIM14) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). (4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Colony formation, flow cytometry, and transwell assays were used to detect SAHA tolerance, proliferation, apoptosis, and invasion in SAHA-tolerant GBM cells. Western blot analysis of protein levels of E-cadherin, N-cadherin, and TRIM14. After Starbase2.0 analysis, the binding between miR-379-5p and circ_0000741 or TRIM14 was proved using a dual-luciferase reporter. The role of circ_0000741 on drug tolerance was assessed using a xenograft tumor model in vivo. RESULTS: Circ_0000741 and TRIM14 were upregulated, and miR-379-5p was reduced in SAHA-tolerant GBM cells. Furthermore, circ_0000741 absence reduced SAHA tolerance, suppressed proliferation, invasion, and induced apoptosis in SAHA-tolerant GBM cells. Mechanistically, circ_0000741 might affect TRIM14 content via sponging miR-379-5p. Besides, circ_0000741 silencing enhanced the drug sensitivity of GBM in vivo. CONCLUSION: Circ_0000741 might accelerate SAHA tolerance by regulating the miR-379-5p/TRIM14 axis, which provided a promising therapeutic target for GBM treatment.


Assuntos
Glioblastoma , MicroRNAs , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Inibidores de Histona Desacetilases/farmacologia , RNA Circular/genética , Tolerância a Medicamentos , MicroRNAs/genética , Proliferação de Células , Proteínas com Motivo Tripartido , Peptídeos e Proteínas de Sinalização Intracelular
5.
Analyst ; 147(14): 3258-3265, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35698892

RESUMO

The abuse of pesticides has introduced a large number of residues in soil and drinking water, which can then enter the food chain and the human body. Monitoring pesticide residues and developing simple and fast detection systems for pesticide residues is urgently needed. In this study, we presented one-pot prepared CdS fluorescent quantum dots (QDs) and explored their sensing application for organic pesticides. The CdS QDs can sensitively and selectively detect three different pesticides, dichlorvos (DDVP), paraquat, and glufosinate-ammonium, through different fluorescence responses. Paraquat can effectively quench the fluorescence of the QDs and DDVP can cause remarkable fluorescent enhancement. Glufosinate-ammonium can induce both 150 nm fluorescent blueshifting and 30-fold fluorescent enhancement. The probe exhibited low detection limits for the three pesticides: 1.44 µM for paraquat, 0.23 mM for DDVP, and 49.8 µM for glufosinate-ammonium. Furthermore, based on the results, we utilized the powerful functions of smartphones to establish a concentration-gray value standard curve through RGB values and gray values to realize the qualitative detection and quantitative analysis of DDVP. It is believed that this work presents a new platform for the simultaneous detection of multiple pesticides using a single QDs probe. The present on-site method using a smartphone is of great potential for water monitoring in rural areas.


Assuntos
Água Potável , Resíduos de Praguicidas , Praguicidas , Pontos Quânticos , Diclorvós/análise , Água Potável/análise , Corantes Fluorescentes/química , Humanos , Paraquat/análise , Resíduos de Praguicidas/análise , Praguicidas/análise , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos
6.
Analyst ; 144(6): 2017-2025, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30702090

RESUMO

Monitoring the levels of pesticides on plant tissues is important for achieving effective protection of crops after application, as well as ensuring low levels of residues during harvest. In this study, a simple, rapid, and fieldable colorimetric method for detecting the pesticide glyphosate (Gly) on the plant tissues in situ using cysteamine-modified gold nanoparticles (AuNPs-Cys) has been developed. The aggregation of AuNPs-Cys in the presence of Gly results in a consequent color change from red to blue (or purple), which could be observed visually on the surface of plant tissues. With the naked eye, we successfully detected Gly spiked on the surface of spinach, apple, and corn leaves in situ. Further verification and quantification were achieved using surface-enhanced Raman spectroscopy (SERS) which uses AuNPs-Cys as the substrate. Moreover, application of this method was demonstrated through the evaluation of the Gly distribution on plant tissues which could greatly facilitate the development of precision agriculture technology.


Assuntos
Colorimetria/métodos , Cisteamina/química , Glicina/análogos & derivados , Ouro/química , Nanopartículas Metálicas/química , Folhas de Planta/metabolismo , Glicina/análise , Malus/química , Malus/metabolismo , Spinacia oleracea/química , Spinacia oleracea/metabolismo , Zea mays/química , Zea mays/metabolismo , Glifosato
8.
Analyst ; 141(3): 1098-104, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26662283

RESUMO

In this paper, we designed and synthesized a novel TBET-based ratiometric fluorescent chemodosimeter, RH-Au, for Au(3+). It was found that the probe RH-Au displayed highly selective, sensitive and naked-eye detection upon the addition of Au(3+). The probe RH-Au can be used in the pH range 6.0-7.5 and the detection limit was determined to be as low as 2.91 nM (0.57 ppb). We also demonstrated a successful application of imaging Au(3+) in living cells using RH-Au.


Assuntos
Transferência de Energia , Ouro/análise , Espectrometria de Fluorescência/instrumentação , Sobrevivência Celular , Cor , Ouro/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Moleculares , Conformação Molecular , Imagem Molecular
9.
Analyst ; 141(11): 3328-36, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27111264

RESUMO

Copper-free click chemistry has been used to graft quaternized poly(dimethylaminoethyl methacrylate) (QPA) modified with azide to the quantum dots (QDs) derived with dibenzocyclooctynes (DBCO). The success of the quaternary ammonium polymer-modified QDs was confirmed by ultraviolet-visible spectrophotometry (UV-Vis), fluorescence spectroscopy, zeta (ζ) potential, size distribution, and transmission electron microscopy (TEM). The QPA-modified QDs exhibited properties of selective recognition and killing of bacteria. The novelty of this study lies in fact that the synthesis method of the antimicrobial QPA-modified QDs is simple. Moreover, from another standpoint, QPA-modified QDs simultaneously possess abilities of selective recognition and killing of bacteria over mammalian cells, which is very different from the currently designed multifunctional antimicrobial systems composed of complicated systematic compositions.


Assuntos
Bactérias/efeitos dos fármacos , Metacrilatos/química , Pontos Quânticos , Compostos de Amônio Quaternário/química , Células A549 , Compostos de Cádmio , Química Click , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Espectrometria de Fluorescência
10.
Environ Sci Technol ; 50(7): 4008-17, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26967261

RESUMO

The continuous disposal of persistent organic pollutants (POPs) in South Africa (SA) warrants concern about their detrimental effects on humans and wildlife. We surveyed six dolphin species (n = 90) incidentally captured in shark net installations or stranded off the SA east and south coast from 2005 to 2009 to study the POP exposure. Sousa plumbea, an inshore and estuarine species, was found to be the most contaminated by total POPs (21 100 ng g(-1) lw) of all the dolphins off SA, followed by Tursiops aduncus (19 800 ng g(-1) lw), Lagenodelphis hosei (13 600 ng g(-1) lw), and Delphinus capensis (5500 ng g(-1) lw), whereas POP levels in the offshore or pelagic delphinids were much lower. In all delphinids, dominant pollutants were dichlorodiphenyltrichloroethanes (DDTs), which represented more than 60% of the total concentration of total POPs, followed by polychlorinated biphenyls (PCBs, 30%). Concentrations of DDTs in S. plumbea and T. aduncus off SA were among the highest levels reported in delphinids globally. Approximately half of the adult T. aduncus had PCB concentrations above the effect threshold for impairment of immune functions. The concentrations of Mirex and Dieldrin in SA delphinids were higher than those found in species from other regions of the Southern Hemisphere.


Assuntos
Golfinhos/metabolismo , Monitoramento Ambiental , Compostos Orgânicos/análise , Análise Espacial , Poluentes Químicos da Água/análise , Adulto , Animais , Feminino , Geografia , Humanos , Masculino , África do Sul , Especificidade da Espécie , Fatores de Tempo
11.
Analyst ; 140(3): 827-36, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25453039

RESUMO

Micropatterning technologies are emerging as an enabling tool for various microfluidic-based applications in life sciences. However, the high throughput and multiplex localization of multiple bio-components in a microfluidic device has not yet been well established. In this paper, we describe a simple and in situ micropatterning method using an integrated microfluidic device with pneumatic microstructures (PµSs) for highly controllable immobilization of both proteins and cells in a high throughput, geometry-dynamic, and multi-patterning way. The precise Pluronic F127 passivation of a microchamber surface except the PµS-blocked regions was performed and characterized, and the spatial dynamics and consistency of both the PµSs and protein/cell micropatterning were optically evaluated and quantitatively demonstrated too. Furthermore, a systematic investigation of PµS-assisted micropatterning in microfluidics was carried out. The feature of high throughput and spatial control of micropatterning can be simply realized by using the well-designed PµS arrays. Meanwhile, the co-micropatterning of different proteins (bovine serum albumin and chicken egg albumin) and cells (human umbilical vein endothelial cells and human hepatocellular carcinoma cells) in a microfluidic device was successfully accomplished with the orderly serial manipulation of PµS groups. We demonstrate that PµS-assisted micropatterning can be applied as a convenient microfluidic component for large-scale and diversified protein/cell patterning and manipulation, which could be useful for cell-based tissue organization, high-throughput imaging, protein-related interactions and immunoassays.


Assuntos
Carcinoma Hepatocelular/química , Ensaios de Triagem em Larga Escala/instrumentação , Células Endoteliais da Veia Umbilical Humana/química , Neoplasias Hepáticas/química , Microfluídica/instrumentação , Proteínas/análise , Células Cultivadas , Humanos , Processamento de Imagem Assistida por Computador , Imunoensaio , Propriedades de Superfície
12.
Anal Chem ; 86(6): 3092-9, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24552272

RESUMO

Photodynamic therapy (PDT) is a noninvasive and light-activated method for cancer treatment. Two of the vital parameters that govern the efficiency of PDT are the light irradiation to the photosensitizer and visual detection of the selective accumulation of the photosensitizer in malignant cells. Herein, we prepared an integrated nanoplatform for targeted PDT and imaging of cancer cells using folic acid and horseradish peroxidase (HRP)-bifunctionalized semiconducting polymer dots (FH-Pdots). In the FH-Pdots, meta-tetra(hydroxyphenyl)-chlorin (m-THPC) was used as photosensitizer to produce cytotoxic reactive oxygen species (ROS); fluorescent semiconducting polymer poly[2-methoxy-5-((2-ethylhexyl)oxy)-p-phenylenevinylene] was used as light antenna and hydrophobic matrix for incorporating m-THPC, and amphiphilic Janus dendrimer was used as a surface functionalization agent to conjugate HRP and aminated folic acid onto the surface of FH-Pdots. Results indicated that the doped m-THPC can be simultaneously excited by the on-site luminol-H2O2-HRP chemiluminescence system through two paths. One is directly through chemiluminescence resonance energy transfer (CRET), and the other is through CRET and subsequent fluorescence resonance energy transfer. In vitro PDT and specificity studies of FH-Pdots using a standard transcriptional and translational assay against MCF-7 breast cancer cells, C6 glioma cells, and NIH 3T3 fibroblast cells demonstrated that cell viability decreased with increasing concentration of FH-Pdots. At the same concentration of FH-Pdots, the decrease in cell viability was positively relevant with increasing folate receptor expression. Results from in vitro fluorescence imaging exhibited that more FH-Pdots were internalized by cancerous MCF-7 and C6 cells than by noncancerous NIH 3T3 cells. All the results demonstrate that the designed semiconducting FH-Pdots can be used as an integrated nanoplatform for targeted PDT and on-site imaging of cancer cells.


Assuntos
Luz , Fotoquimioterapia , Polímeros/química , Semicondutores , Linhagem Celular Tumoral , Humanos
13.
Analyst ; 139(1): 105-15, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24162459

RESUMO

Graphene oxides with different surface charges were fabricated from carboxylated graphene oxide by chemical modification with amino- (-NH2), poly-m-aminobenzene sulfonic acid- (-NH2/-SO3H), or methoxyl- (-OCH3) terminated functional groups. The chemically functionalized graphene oxides and the carboxylated graphene oxide were characterized by infrared spectroscopy, X-ray photoelectron spectroscopy, UV-Vis spectrometry, ζ potential measurements, field emission scanning electron microscopy, and contact angle analyses. Subsequently, the resulting graphene oxides were used as substrates for culturing primary rat hippocampal neurons to investigate neurite outgrowth and branching. The morphological features of neurons that directly reflect their potential capability in synaptic transmission were characterized. The results demonstrate that the chemical properties of graphene oxide can be systematically modified by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by the functionalized graphene oxides, the outgrowth and branching of neuronal processes can be controlled. Compared with neutral, zwitterionic, or negatively charged graphene oxides, positively charged graphene oxide was found to be more beneficial for neurite outgrowth and branching. The ability to chemically modify graphene oxide to control neurite outgrowth could be implemented clinically, especially in cases wherein long-term presence of outgrowth modulation is necessary.


Assuntos
Grafite/química , Neurônios/fisiologia , Óxidos/química , Animais , Bovinos , Células Cultivadas , Grafite/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Óxidos/farmacologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
14.
Heliyon ; 10(11): e31665, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845874

RESUMO

In this paper, foam concrete is modified using graphite and carbon fiber as absorbents. The mechanical properties are analyzed in conjunction with hydration products, pore size distribution based on XCT test. Additionally, the resistivity, complex permittivity and complex permeability are tested. The results demonstrate that carbon fiber enhances the proportion of pores with diameters less than 200 µm in foam concrete, thereby significantly enhancing its flexural strength. Furthermore, incorporating graphite helps offset the initial retardation of sulfoaluminate cement hydration induced by carbon fibers, leading to an increase in the average pore size and a reduction in compressive strength. The incorporation of carbon fibers at a concentration of 0.6 wt% achieves the percolation threshold, akin to scenarios with singular fiber incorporation. Exceeding 2 wt% graphite content results in negligible influence on the conductivity. The synergistic integration of graphite and carbon fibers significantly improves the electromagnetic wave absorption performance of the composite. At a thickness of 6 mm, the material exhibits an effective bandwidth where the reflection loss is less than -10 dB, extending up to 2.5 GHz, which constitutes 52.08 % of the tested frequency spectrum.

15.
Int J Biol Macromol ; : 133595, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960253

RESUMO

Bacterial keratitis is among the most prevalent causes of blindness. Currently, the abuse of antibiotics in clinical settings not only lacks bactericidal effects but also readily induces bacterial resistance, making the clinical treatment of bacterial keratitis a significant challenge. In this study, we present an injectable hydrogel (GS-PNH-FF@CuS/MnS) containing self-assembled diphenylalanine dipeptide (FF) and CuS/MnS nanocomposites (CuS/MnS NCs) that destroy bacterial cell walls through a synergistic combination of mild photothermal therapy (PTT), chemodynamic therapy (CDT), ion release chemotherapy, and self-assembled dipeptide contact, thereby eliminating Pseudomonas aeruginosa. Under 808 nm laser irradiation, the bactericidal efficiency of GS-PNH-FF@CuS/MnS hydrogel against P. aeruginosa in vitro reach up to 96.97 %. Furthermore, GS-PNH-FF@CuS/MnS hydrogel is applied topically to kill bacteria, reduce inflammation, and promote wound healing. Hematoxylin-eosin (H&E) staining, Masson staining, immunohistochemistry and immunofluorescence staining are used to evaluate the therapeutic effect on infected rabbit cornea models in vivo. The GS-PNH-FF@CuS/MnS demonstrate good biocompatibility with human corneal epithelial cells and exhibit no obvious eyes side effects. In conclusion, the GS-PNH-FF@CuS/MnS hydrogel in this study provides an effective and safe treatment strategy for bacterial keratitis through a multimodal approach.

16.
Int J Biol Macromol ; 257(Pt 2): 128801, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101662

RESUMO

Hydrogel dressings traditionally promote wound healing by maintaining moisture and preventing infection rather than by actively stimulating the skin to regulate cell behavior. Electrical stimulation (ES) is known to modulate skin cell behavior and to promote wound healing. This study describes the first multifunctional conductive hydrogel for wound healing and health monitoring based on a deep eutectic solvent (DES). Sodium hyaluronate and polydopamine constituted the hydrogel skeleton, and tea tree oil and Panax notoginseng extract were used as the active ingredients to induce adhesion, promote antioxidant and antibacterial activity, and support biocompatibility of the hydrogel. The inclusion of DES increases the temperature resistance of the hydrogel and improves its environmental adaptability. We used a small, portable coin battery-powered to provide electrical stimulation. Treatment with both the hydrogel and ES resulted in a stronger therapeutic effect than that provided by the commercial DuoDERM dressing. The hydrogel detected movement and strain when applied as a sensor. Overall, this study reports the development of a multifunctional conductive hydrogel dressing based on DES as a wound healing and health monitor.


Assuntos
Solventes Eutéticos Profundos , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Ácido Hialurônico/uso terapêutico , Cicatrização , Pele , Antibacterianos
17.
Anal Chem ; 85(1): 235-44, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23205467

RESUMO

Myocardial infarction is a major cause of morbidity and mortality worldwide. However, the methodological development of a spatiotemporally controllable investigation of the damage events in myocardial infarction remains challengeable. In the present study, we describe a micropillar array-aided tissue interface mimicking microfluidic device for the dynamic study of hypoxia-induced myocardial injury in a microenvironment-controllable manner. The mass distribution in the device was visually characterized, calculated, and systematically evaluated using the micropillar-assisted biomimetic interface, physiologically relevant flows, and multitype transportation. The fluidic microenvironment in the specifically functional chamber for cell positioning and analysis was successfully constructed with high fluidic relevance to the myocardial tissue. We also performed a microenvironment-controlled microfluidic cultivation of myocardial cells with high viability and regular structure integration. Using the well-established culture device with a tissue-mimicking microenvironment, a further on-chip investigation of hypoxia-induced myocardial injury was carried out and the varying apoptotic responses of myocardial cells were temporally monitored and measured. The results show that the hypoxia directionally resulted in observable cell shrinkage, disintegration of the cytoskeleton, loss of mitochondrial membrane potential, and obvious activation of caspase-3, which indicates its significant apoptosis effect on myocardial cells. We believe this microfluidic device can be suitable for temporal investigations of cell activities and responses in myocardial infarction. It is also potentially valuable to the microcontrol development of tissue-simulated studies of multiple clinical organ/tissue disease dynamics.


Assuntos
Hipóxia Celular , Traumatismos Cardíacos/fisiopatologia , Técnicas Analíticas Microfluídicas/métodos , Animais , Biomimética , Caspase 3/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Forma Celular , Citoesqueleto/fisiologia , Traumatismos Cardíacos/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência , Ratos
18.
Molecules ; 18(9): 11496-511, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24048283

RESUMO

Two series of apigenin [5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one] derivatives, 3a-3j and 4a-4j, were synthesized. The apigenin and alkyl amines moieties of these compounds were separated by C2 or C3 spacers, respectively. The chemical structures of the apigenin derivatives were confirmed using ¹H-NMR, ¹³C-NMR, and electrospray ionization mass spectroscopy. The in vitro antibacterial and antiproliferative activities of all synthesized compounds were determined. Among the tested compounds, 4a-4j displayed significant antibacterial activity against the tested strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa). Additionally, 4i showed the best inhibitory activity with minimum inhibitory concentrations of 1.95, 3.91, 3.91, and 3.91 µg/mL against S. aureus, B. subtilis, E. coli, and P. aeruginosa, respectively. The antiproliferative activity of the apigenin derivatives was evaluated by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. We determined that 4a-4j displayed better growth inhibition activity against four human cancer cell lines, namely, human lung (A549), human cervical (HeLa), human hepatocellular liver (HepG2), and human breast (MCF-7) cancer cells, than the parent apigenin. Compound 4j was found to be the most active antiproliferative compound against the selected cancer cells. Structure-activity relationships were also discussed based on the obtained experimental data.


Assuntos
Antibacterianos/síntese química , Antineoplásicos/síntese química , Flavonas/síntese química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Flavonas/farmacologia , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
19.
Molecules ; 18(5): 5420-33, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23666008

RESUMO

A series of new matrinic acid derivatives 5a-e was synthesized. The chemical structures of the synthesized compounds were confirmed by ¹H-NMR, ¹³C-NMR, and electrospray ionization mass spectroscopy. The anti-tumor activities were also investigated in vitro by evaluating the effect of synthesized compounds on the proliferation of A375, A549, HeLa, and HepG2 cells. Compound 5e was found to be the most potent against A375 and HeLa cells, with IC50 values of 37 and 75.5 µg/mL, respectively. Compounds 5b, 5c, 5g, and 5h also exhibited antiproliferative activities against A549 cells, with IC50 values within the 36.2-47 µg/mL range. For HepG2 cells, 5e and 5i, with IC50 values of 78.9 and 61 µg/mL, respectively, showed higher antiproliferative activity than taxol.


Assuntos
Ácidos Carbocíclicos , Alcaloides , Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Quinolizinas , Ácidos Carbocíclicos/síntese química , Ácidos Carbocíclicos/química , Ácidos Carbocíclicos/farmacocinética , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Células Hep G2 , Humanos , Matrinas
20.
Int J Biol Macromol ; 242(Pt 1): 124715, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148939

RESUMO

The healing of infected wounds has always been a clinical challenge. With the increasing threat of drug resistance due to antibiotic overuse, it is imperative to improve antibacterial wound dressings. In this study, we designed a double network (DN) hydrogel via a "one pot method" with antibacterial activity, and natural polysaccharides with the potential to promote skin wound healing were used. That is, a DN hydrogel matrix was formed by the hydrogen bond crosslinking of curdlan and the covalent crosslinking of flaxseed gum under the action of borax. We added ε-polylysine (ε-PL) as a bactericide. Tannic acid/ferric ion (TA/Fe3+) complex was also introduced into the hydrogel network as a photothermal agent to induce photothermal antibacterial properties. The hydrogel had fast self-healing, tissue adhesion, mechanical stability, good cell compatibility and photothermal antibacterial activity. In vitro studies of hydrogel showed its ability to inhibit S. aureus and E. coli. In vivo experiments also demonstrated the significant healing effect of hydrogel when used to treat wounds infected by S. aureus by promoting collagen deposition and accelerating the formation of skin appendage. This work provides a new design for the preparation of safe antibacterial hydrogel wound dressings and demonstrates great potential for promoting wound healing of bacterial infections.


Assuntos
Linho , Hidrogéis , Escherichia coli , Staphylococcus aureus , Cicatrização , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA