Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioinformatics ; 38(10): 2880-2891, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561182

RESUMO

MOTIVATION: Drug repositioning is an attractive alternative to de novo drug discovery due to reduced time and costs to bring drugs to market. Computational repositioning methods, particularly non-black-box methods that can account for and predict a drug's mechanism, may provide great benefit for directing future development. By tuning both data and algorithm to utilize relationships important to drug mechanisms, a computational repositioning algorithm can be trained to both predict and explain mechanistically novel indications. RESULTS: In this work, we examined the 123 curated drug mechanism paths found in the drug mechanism database (DrugMechDB) and after identifying the most important relationships, we integrated 18 data sources to produce a heterogeneous knowledge graph, MechRepoNet, capable of capturing the information in these paths. We applied the Rephetio repurposing algorithm to MechRepoNet using only a subset of relationships known to be mechanistic in nature and found adequate predictive ability on an evaluation set with AUROC value of 0.83. The resulting repurposing model allowed us to prioritize paths in our knowledge graph to produce a predicted treatment mechanism. We found that DrugMechDB paths, when present in the network were rated highly among predicted mechanisms. We then demonstrated MechRepoNet's ability to use mechanistic insight to identify a drug's mechanistic target, with a mean reciprocal rank of 0.525 on a test set of known drug-target interactions. Finally, we walked through repurposing examples of the anti-cancer drug imatinib for use in the treatment of asthma, and metolazone for use in the treatment of osteoporosis, to demonstrate this method's utility in providing mechanistic insight into repurposing predictions it provides. AVAILABILITY AND IMPLEMENTATION: The Python code to reproduce the entirety of this analysis is available at: https://github.com/SuLab/MechRepoNet (archived at https://doi.org/10.5281/zenodo.6456335). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Bases de Dados de Produtos Farmacêuticos
2.
Elife ; 92020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32180547

RESUMO

Wikidata is a community-maintained knowledge base that has been assembled from repositories in the fields of genomics, proteomics, genetic variants, pathways, chemical compounds, and diseases, and that adheres to the FAIR principles of findability, accessibility, interoperability and reusability. Here we describe the breadth and depth of the biomedical knowledge contained within Wikidata, and discuss the open-source tools we have built to add information to Wikidata and to synchronize it with source databases. We also demonstrate several use cases for Wikidata, including the crowdsourced curation of biomedical ontologies, phenotype-based diagnosis of disease, and drug repurposing.


Assuntos
Disciplinas das Ciências Biológicas , Biologia Computacional , Bases de Dados Factuais , Genômica , Proteômica , Humanos , Reconhecimento Automatizado de Padrão
3.
PLoS One ; 12(3): e0173375, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28264018

RESUMO

Commercially available automated cell counters based on trypan blue dye-exclusion are widely used in industrial cell culture process development and manufacturing to increase throughput and eliminate inherent variability in subjective interpretation associated with manual hemocytometers. When using these cell counters, sample dilution is often necessary to stay within the assay measurement range; however, the effect of time and diluents on cell culture is not well understood. This report presents the adverse effect of phosphate buffered saline as a diluent on cell viability when used in combination with an automated cell counter. The reduced cell viability was attributed to shear stress introduced by the automated cell counter. Furthermore, length of time samples were incubated in phosphate buffered saline also contributed to the observed drop in cell viability. Finally, as erroneous viability measurements can severely impact process decisions and product quality, this report identifies several alternative diluents that can maintain cell culture viability over time in order to ensure accurate representation of cell culture conditions.


Assuntos
Automação , Contagem de Células/métodos , Sobrevivência Celular , Animais , Células CHO , Contagem de Células/normas , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Meios de Cultura
4.
Materials (Basel) ; 9(3)2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28773318

RESUMO

We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH) substrates directly in commodity shrink wrap film utilizing Argon (Ar) plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM) images confirm the presence of these biomimetic structures. Contact angle (CA) and contact angle hysteresis (CAH) measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

5.
Methods Mol Biol ; 1181: 97-108, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25070330

RESUMO

The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.


Assuntos
Materiais Biomiméticos/farmacologia , Técnicas de Cultura de Células/métodos , Fenômenos Mecânicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Polietileno/farmacologia , Anisotropia , Fenômenos Biomecânicos , Diferenciação Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Propriedades de Superfície , Fatores de Tempo
6.
Biomaterials ; 35(2): 675-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24144905

RESUMO

We present an integrated platform comprised of a biomimetic substrate and physiologically aligned human pluripotent stem cell-derived cardiomyocytes (CMs) with optical detection and algorithms to monitor subtle changes in cardiac properties under various conditions. In the native heart, anisotropic tissue structures facilitate important concerted mechanical contraction and electrical propagation. To recapitulate the architecture necessary for a physiologically accurate heart response, we have developed a simple way to create large areas of aligned CMs with improved functional properties using shrink-wrap film. Combined with simple bright field imaging, obviating the need for fluorescent labels or beads, we quantify and analyze key cardiac contractile parameters. To evaluate the performance capabilities of this platform, the effects of two drugs, E-4031 and isoprenaline, were examined. Cardiac cells supplemented with E-4031 exhibited an increase in contractile duration exclusively due to prolonged relaxation peak. Notably, cells aligned on the biomimetic platform responded detectably down to a dosage of 3 nM E-4031, which is lower than the IC50 in the hERG channel assay. Cells supplemented with isoprenaline exhibited increased contractile frequency and acceleration. Interestingly, cells grown on the biomimetic substrate were more responsive to isoprenaline than those grown on the two control surfaces, suggesting topography may help induce more mature ion channel development. This simple and low-cost platform could thus be a powerful tool for longitudinal assays as well as an effective tool for drug screening and basic cardiac research.


Assuntos
Biomimética , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Antiarrítmicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Concentração Inibidora 50 , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA