Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769493

RESUMO

The sugar distribution mechanism in fruits has been the focus of research worldwide; however, it remains unclear. In order to elucidate the relevant mechanisms in grape berries, the expression, localization, function, and regulation of three sucrose transporters were studied in three representative Vitis varieties. Both SUC11 and SUC12 expression levels were positively correlated with sugar accumulation in grape berries, whereas SUC27 showed a negative relationship. The alignment analysis and sucrose transport ability of isolated SUCs were determined to reflect coding region variations among V. vinifera, V. amurensis Ruper, and V. riparia, indicating that functional variation existed in one SUT from different varieties. Furthermore, potentially oligomerized abilities of VvSUCs colocalized in the sieve elements of the phloem as plasma membrane proteins were verified. The effects of oligomerization on transport properties were characterized in yeast. VvSUC11 and VvSUC12 are high-affinity/low-capacity types of SUTs that stimulate each other by upregulating Vmax and Km, inhibiting sucrose transport, and downregulating the Km of VvSUC27. Thus, changes in the distribution of different SUTs in the same cell govern functional regulation. The activation and inhibition of sucrose transport could be achieved in different stages and tissues of grape development to achieve an effective distribution of sugar.


Assuntos
Frutas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Vitis/metabolismo , Transporte Biológico , Frutas/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Multimerização Proteica , Relação Estrutura-Atividade , Vitis/crescimento & desenvolvimento
2.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283825

RESUMO

Sucrose is the predominant form of sugar transported from photosynthetic (source) to non-photosynthetic (sink) organs in higher plants relying on the transporting function of sucrose transporters (SUTs or SUCs). Many SUTs have been identified and characterized in both monocots and dicots. However, the function of sucrose transporters (SUTs or SUCs) from Vitis is not clear. As the world's most planted grape species, Vitis vinifera owns three sucrose transport activity verified SUTs. In this study, we constructed three kinds of VvSUC (Vitis vinifera SUC)-overexpressing transgenic Arabidopsis. VvSUC-overexpressing transgenic Arabidopsis was cultured on sucrose-supplemented medium. VvSUC11- and VvSUC12-overexpressing lines had similar thrived growth phenotypes, whereas the size and number of leaves and roots from VvSUC27-overexpressing lines were reduced compared with that of WT. When plants were cultured in soil, all SUT transgenic seedlings produced more number of leaves and siliques, resulting in higher yield (38.6% for VvSUC12-transformants) than that of WT. Besides, VvSUC27-transformants and VvSUC11-transformants enhanced drought resistance in Arabidopsis, providing a promising target for crop improvement.


Assuntos
Adaptação Biológica/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Genes de Plantas , Sacarose/economia , Vitis/genética , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Fenótipo , Desenvolvimento Vegetal/genética , Sacarose/metabolismo
3.
Front Plant Sci ; 12: 759047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868153

RESUMO

Seedless fruits are favorable in the market because of their ease of manipulation. Sucrose transporters (SUTs or SUCs) are essential for carbohydrate metabolism in plants. Whether SUTs participate directly in causing stenospermocarpy, thereby increasing fruit quality, remains unclear. Three SUTs, namely, VvSUC11, VvSUC12, and VvSUC27 from Vitis vinifera, were characterized and ectopic expression in tomatoes. VvSUC11- and VvSUC12-overexpressing lines had similar flower and fruit phenotypes compared with those of the wild type. VvSUC27-overexpressing lines produced longer petals and pistils, an abnormal stigma, much less and shrunken pollen, and firmer seedless fruits. Moreover, produced fruits from all VvSUC-overexpressing lines had a higher soluble solid content and sugar concentration. Transcriptomic analysis revealed more genes associated with carbohydrate metabolism and sugar transport and showed downregulation of auxin- and ethylene-related signaling pathways during early fruit development in VvSUC27-overexpressing lines relative to that of the wild type. Our findings demonstrated that stenospermocarpy can be induced by overexpression of VvSUC27 through a consequential reduction in nutrient delivery to pollen at anthesis, with a subsequent downregulation of the genes involved in carbohydrate metabolism and hormone signaling. These commercially desirable results provide a new strategy for bioengineering stenospermocarpy in tomatoes and in other fruit plants.

6.
Front Plant Sci ; 8: 1069, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676814

RESUMO

The import of sugar from source leaves and it further accumulation in grape berries are considerably high during ripening, and this process is mediated via sucrose transporters. In this study, a grape sucrose transporter (SUT) gene, VvSUC27, located at the plasma membrane, was transferred to tobacco (Nicotiana tabacum). The transformants were more sensitive to sucrose and showed more rapid development, especially roots, when cultured on MS agar medium containing sucrose, considering that the shoot/root dry weight ratio was only half that of the control. Moreover, all transformed plants exhibited light-colored leaves throughout their development, which indicated chlorosis and an associated reduction in photosynthesis. The total sugar content in the roots and stems of transformants was higher than that in control plants. No significant difference was observed in the leaves between the transformants and control plants. The levels of growth-promoting hormones were increased, and those of stress-mediating hormones were reduced in transgenic tobacco plants. The qRT-PCR analysis revealed that the expression of VvSUC27 was 1,000 times higher than that of the autologous tobacco sucrose transporter, which suggested that the markedly increased growth rate of transformants was because of the heterogeneously expressed gene. The transgenic tobacco plants showed resistance to abiotic stresses. Strikingly, the overexpression of VvSUC27 leaded to the up regulation of most reactive oxygen species scavengers and abscisic acid-related genes that might enable transgenic plants to overcome abiotic stress. Taken together, these results revealed an important role of VvSUC27 in plant growth and response to abiotic stresses, especially in the presence of sucrose in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA