Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Neurosci ; 27(1): 74-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36576232

RESUMO

Objectives: The high-salt diet (HSD) has been associated with cognitive dysfunction by attacking the cerebral microvasculature, through an adaptive response, initiated in the intestine and mediated by Th17 cells. In the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), it has been described that NaCl causes an increase in T cell infiltration in the central nervous system. NaCl also promotes macrophage response and Th17 cell differentiation, worsening the course of the disease. HSD may trigger an activation of the immune system and enhance inflammation. However, certain studies not only do not support this possibility, but support the opposite, as the effect of salt on immune cells may not necessarily be pathogenic. Therefore, this study aimed to evaluate the effect of an over intake of salt in rats with EAE, based on the clinical course, oxidative stress, markers of inflammation and the gut dysbiosis.Methods: 15 Dark Agouti rats were used, which were divided into control group, EAE group and EAE + NaCl group. Daily 0.027 g of NaCl dissolved in 300 µl of H2O was administered through a nasogastric tube for 51 days.Results: NaCl administration produced an improvement in clinical status and a decrease in biomarkers of oxidative stress, inflammation, and dysbiosis.Conclusion: The underlying mechanism by which NaCl causes these effects could involve the renin-angiotensin-aldosterone system (RAAS), which is blocked by high doses of salt.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Ratos , Animais , Camundongos , Esclerose Múltipla/complicações , Cloreto de Sódio/efeitos adversos , Disbiose , Inflamação/complicações , Estresse Oxidativo , Cloreto de Sódio na Dieta/efeitos adversos , Camundongos Endogâmicos C57BL
2.
Ultrastruct Pathol ; 46(5): 401-412, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35994513

RESUMO

In this study, we investigated the effect of transcranial magnetic stimulation (TMS) on the ultrastructure of muscle fibers and satellite cells in rats with experimental autoimmune encephalomyelitis (EAE). EAE-induced animals were treated with TMS (60 Hz at 0.7 mT) for 2 hours in the morning, once a day, 5 days a week, for 3 weeks, starting on day 15 post-immunization. The rats were sacrificed on day 36 post-immunization, and the soleus muscles were evaluated by light microscopy and transmission electron microscopy. Findings were compared with a non-treated EAE group. Electron microscopy analysis showed the presence of degenerated mitochondria, autophagic vacuoles, and altered myofibrils in non-treated EAE group. This correlates with the presence of acid phosphatase activity in muscle fibers and core-targetoid lesions with desmin immunohistochemistry. Most myonuclei in the EAE group showed apoptotic features. In contrast, EAE induced-TMS treated animals had less ultrastructural changes in the mitochondria and the myofibrils, together with less frequent apoptotic nuclear features. Peripheral desmin+ protrusions, as a marker of active satellite cells, were significantly increased in TMS-treated group. This correlates ultrastructurally with the presence of active features in satellite cells in the TMS group. In conclusion, the attenuation of ultrastructural alterations in muscle fibers and activation response of satellite cells caused by EAE indicated that skeletal muscle had a regenerative response to TMS.


Assuntos
Encefalomielite Autoimune Experimental , Fosfatase Ácida , Animais , Desmina , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/ultraestrutura , Ratos , Estimulação Magnética Transcraniana
3.
Inflammopharmacology ; 30(5): 1569-1596, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35665873

RESUMO

BACKGROUND: Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM: The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS: Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3ß, which could be useful in controlling the microbiota. CONCLUSION: Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.


Assuntos
COVID-19 , Melatonina , Esclerose Múltipla , Adjuvantes Imunológicos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catalase/metabolismo , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Feminino , Glutationa , Glutationa Peroxidase/metabolismo , Humanos , Inflamassomos , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , SARS-CoV-2 , Superóxido Dismutase/metabolismo
4.
Expert Syst Appl ; 207: 117977, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35784094

RESUMO

Many types of research have been carried out with the aim of combating the COVID-19 pandemic since the first outbreak was detected in Wuhan, China. Anticipating the evolution of an outbreak helps to devise suitable economic, social and health care strategies to mitigate the effects of the virus. For this reason, predicting the SARS-CoV-2 transmission rate has become one of the most important and challenging problems of the past months. In this paper, we apply a two-stage mid and long-term forecasting framework to the epidemic situation in eight districts of Andalusia, Spain. First, an analytical procedure is performed iteratively to fit polynomial curves to the cumulative curve of contagions. Then, the extracted information is used for estimating the parameters and structure of an evolutionary artificial neural network with hybrid architectures (i.e., with different basis functions for the hidden nodes) while considering single and simultaneous time horizon estimations. The results obtained demonstrate that including polynomial information extracted during the training stage significantly improves the mid- and long-term estimations in seven of the eight considered districts. The increase in average accuracy (for the joint mid- and long-term horizon forecasts) is 37.61% and 35.53% when considering the single and simultaneous forecast approaches, respectively.

5.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445295

RESUMO

Skeletal muscle is affected in experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis that produces changes including muscle atrophy; histological features of neurogenic involvement, and increased oxidative stress. In this study, we aimed to evaluate the therapeutic effects of transcranial magnetic stimulation (TMS) on the involvement of rat skeletal muscle and to compare them with those produced by natalizumab (NTZ). EAE was induced by injecting myelin oligodendrocyte glycoprotein (MOG) into Dark Agouti rats. Both treatments, NTZ and TMS, were implemented from day 15 to day 35. Clinical severity was studied, and after sacrifice, the soleus and extensor digitorum longus muscles were extracted for subsequent histological and biochemical analysis. The treatment with TMS and NTZ had a beneficial effect on muscle involvement in the EAE model. There was a clinical improvement in functional motor deficits, atrophy was attenuated, neurogenic muscle lesions were reduced, and the level of oxidative stress biomarkers was lower in both treatment groups. Compared to NTZ, the best response was obtained with TMS for all the parameters analyzed. The myoprotective effect of TMS was higher than that of NTZ. Thus, the use of TMS may be an effective strategy to reduce muscle involvement in multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Atrofia Muscular/prevenção & controle , Estimulação Magnética Transcraniana , Animais , Contagem de Células , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Glicoproteína Mielina-Oligodendrócito , Natalizumab/farmacologia , Ratos
6.
Methods Cell Biol ; 188: 35-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880527

RESUMO

Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Encefalomielite Autoimune Experimental/patologia , Animais , Esclerose Múltipla/patologia , Esclerose Múltipla/imunologia , Camundongos , Humanos , Ratos , Feminino
7.
J Clin Med ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893032

RESUMO

Multiple sclerosis (MS) is characterized by a variety of symptoms that have a major impact on quality of life (QoL) even in early stages. In addition to individual motor, sensory, visual disturbances, and brainstem and sphincter disorders, which are expressed through the widely used Expanded Disability Status Scale (EDSS), other manifestations of MS have a detrimental effect on overall functioning and quality of life, such as cognitive impairment, depression, anxiety, fatigue, and pain. However, when talking about QoL, categorical definitions cannot be used because although the concept is generally understood, it is highly nuanced. Suffering from MS can significantly reduce QoL. Numerous research studies have focused on trying to identify and assess which are the elements that most affect the loss of QoL in MS people. However, in addition to the fact that the measurement of QoL can be subjective, it is very difficult to consider these elements in isolation, as they are interrelated. One such limiting factor of QoL that has been investigated is cognitive impairment (CI). This has been shown to have an impact on the lives of MS people, although the different approaches that have been taken to assess CI have evident limitations.

8.
J Nutr Biochem ; 124: 109497, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875228

RESUMO

Multiple sclerosis (MS) is a chronic demyelinating disease, whose etiology is not yet fully understood, although there are several factors that can increase the chances of suffering from it. These factors include nutrition, which may be involved in the pathogenesis of the disease. In relation to nutrition, docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), has emerged as an important player in the regulation of neuroinflammation, being considered a pleiotropic molecule. This study aimed to evaluate the effect of DHA supplementation on clinical state and oxidative stress produced by experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Twenty-five Dark Agouti rats which were used divided into Control Group, Control+Vehicle Group, Control+DHA Group, EAE Group, and EAE+DHA Group. DHA was administered for 51 days by intraperitoneal (i.p.) injection at a dose of 40 mg/kg, once a day, 5 days a week. DHA supplementation produced a decrease in oxidative stress, as well as an improvement in the clinical score of the disease. DHA could exert a beneficial effect on the clinic of MS, through the activation of the antioxidant factor Nrf2.


Assuntos
Encefalomielite Autoimune Experimental , Ácidos Graxos Ômega-3 , Esclerose Múltipla , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Modelos Teóricos
9.
Neurotox Res ; 42(2): 18, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393521

RESUMO

Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.


Assuntos
Doenças Neurodegenerativas , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Citoplasma/metabolismo , Doenças Neurodegenerativas/metabolismo
10.
Mol Neurobiol ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307967

RESUMO

Mitochondrial dysfunction plays a key role in the development of neurodegenerative disorders. In contrast, the regulation of the endocannabinoid system has been shown to promote neuroprotection in different neurotoxic paradigms. The existence of an active form of the cannabinoid receptor 1 (CB1R) in mitochondrial membranes (mitCB1R), which might exert its effects through the same signaling mechanisms as the cell membrane CB1R, has been shown to regulate mitochondrial activity. Although there is evidence suggesting that some cannabinoids may induce protective effects on isolated mitochondria, substantial evidence on the role of cannabinoids in mitochondria remains to be explored. In this work, we developed a toxic model of mitochondrial dysfunction induced by exposure of brain mitochondria to the succinate dehydrogenase inhibitor 3-nitropropionic acid (3-NP). Mitochondria were also pre-incubated with the endogenous agonist anandamide (AEA) and the synthetic CB1R agonist WIN 55212-2 to evaluate their protective effects. Mitochondrial reduction capacity, reactive oxygen species (ROS) formation, and mitochondrial swelling were assessed as toxic markers. While 3-NP decreased the mitochondrial reduction capacity and augmented mitochondrial ROS formation and swelling, both AEA and WIN 55212-2 ameliorated these toxic effects. To explore the possible involvement of mitCB1R activation on the protective effects of AEA and WIN 55212-2, mitochondria were also pre-incubated in the presence of the selective CB1R antagonist AM281, which completely reverted the protective effects of the cannabinoids to levels similar to those evoked by 3-NP. These results show partial protective effects of cannabinoids, suggesting that mitCB1R activation may be involved in the recovery of compromised mitochondrial activity, related to reduction of ROS formation and further prevention of mitochondrial swelling.

11.
Rev Neurosci ; 24(5): 507-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24077617

RESUMO

It has been almost 40 years since Barker, Jalinous, and Freeston designed and used the first device of transcranial magnetic stimulation (TMS). From then until now, this technique has evolved vertiginously, appearing a lot of new protocols and device modifications, which associated with new technologies complement and enhance the versatility of this technique. TMS has demonstrated to be a safe technology and become a key tool in the study of the complex brain processes. Despite this, it is as a therapeutic tool where this technique has caused a revolution. In this regard, this type of non-invasive brain stimulation has been proven useful in a variety of neurodegenerative and psychiatric disorders due to its biochemical, molecular, and cellular effects, with depression being the paradigm of the therapeutic effectiveness of this technique. This review focuses on a detailed vision of how this type of radiation modifies different biochemical and cellular processes that induce the mechanisms and pathways underlying the therapeutic effects of TMS.


Assuntos
Encéfalo/fisiologia , Transtornos Mentais/terapia , Doenças Neurodegenerativas/terapia , Estimulação Magnética Transcraniana/métodos , Encéfalo/ultraestrutura , Humanos , Mitocôndrias/fisiologia , Neurônios/ultraestrutura , Neurotransmissores/metabolismo
12.
CNS Neurol Disord Drug Targets ; 22(7): 1039-1056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35713133

RESUMO

Alzheimer's disease (AD) is considered the most frequent neurodegenerative disorder worldwide, compromising cognitive function in patients, with an average incidence of 1-3% in the open population. Protein aggregation into amyloidogenic plaques and neurofibrillary tangles, as well as neurodegeneration in the hippocampal and cortical areas, represent the neuropathological hallmarks of this disorder. Mechanisms involved in neurodegeneration include protein misfolding, augmented apoptosis, disrupted molecular signaling pathways and axonal transport, oxidative stress, inflammation, and mitochondrial dysfunction, among others. It is precisely through a disrupted energy metabolism that neural cells trigger toxic mechanisms leading to cell death. In this regard, the study of mitochondrial dynamics constitutes a relevant topic to decipher the role of mitochondrial dysfunction in neurological disorders, especially when considering that amyloid-beta peptides can target mitochondria. Specifically, the amyloid beta (Aß) peptide, known to accumulate in the brain of AD patients, has been shown to disrupt overall mitochondrial metabolism by impairing energy production, mitochondrial redox activity, and calcium homeostasis, thus highlighting its key role in the AD pathogenesis. In this work, we review and discuss recent evidence supporting the concept that mitochondrial dysfunction mediated by amyloid peptides contributes to the development of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Dinâmica Mitocondrial , Mitocôndrias/metabolismo
13.
Front Genet ; 14: 1168713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152998

RESUMO

Thallium (Tl) is a toxic heavy metal responsible for noxious effects in living organisms. As a pollutant, Tl can be found in the environment at high concentrations, especially in industrial areas. Systemic toxicity induced by this toxic metal can affect cell metabolism, including redox alterations, mitochondrial dysfunction, and activation of apoptotic signaling pathways. Recent focus on Tl toxicity has been devoted to the characterization of its effects at the nuclear level, with emphasis on DNA, which, in turn, may be responsible for cytogenetic damage, mutations, and epigenetic changes. In this work, we review and discuss past and recent evidence on the toxic effects of Tl at the systemic level and its effects on DNA. We also address Tl's role in cancer and its control.

14.
Neuroscience ; 529: 116-128, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595941

RESUMO

Oxidative stress is heavily involved in several pathological features of Multiple Sclerosis (MS), such as myelin destruction, axonal degeneration, and inflammation. Different therapies have been shown to reduce the oxidative stress that occurs in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Some of these therapies are transcranial magnetic stimulation (TMS), extra virgin olive oil (EVOO) and S-allyl cysteine (SAC). This study aims to test the antioxidant effect of these three therapies, to compare the efficacy of SAC versus TMS and EVOO, and to analyze the effect of combining SAC + TMS and SAC and EVOO. Seventy Dark Agouti rats were used, which were divided into Control group; Vehicle group; Mock group; SAC; EVOO; TMS; SAC + EVOO; SAC + TMS; EAE; EAE + SAC; EAE + EVOO; EAE + TMS; EAE + SAC + EVOO; EAE + SAC + TMS. The TMS consisted of an oscillatory magnetic field in the form of a sine wave with a frequency of 60 Hz and an amplitude of 0.7mT (EL-EMF) applied for two hours in the morning, once a day, five days a week. SAC was administered at a dose of 50 mg/kg body weight, orally daily, five days a week. EVOO represented 10% of their calorie intake in the total standard daily diet of rats AIN-93G. All treatments were maintained for 51 days. TMS, EVOO and SAC, alone or in combination, reduce oxidative stress, increasing antioxidant defenses and also lowering the clinical score. Combination therapies do not appear to be more potent than individual therapies against the oxidative stress of EAE or its clinical symptoms.

15.
Neurotox Res ; 41(6): 514-525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37458923

RESUMO

Inhibition of enzymes responsible for endocannabinoid hydrolysis represents an invaluable emerging tool for the potential treatment of neurodegenerative disorders. Monoacylglycerol lipase (MAGL) is the enzyme responsible for degrading 2-arachydonoylglycerol (2-AG), the most abundant endocannabinoid in the central nervous system (CNS). Here, we tested the effects of the selective MAGL inhibitor JZL184 on the 3-nitropropinic acid (3-NP)-induced short-term loss of mitochondrial reductive capacity/viability and oxidative damage in rat brain synaptosomal/mitochondrial fractions and cortical slices. In synaptosomes, while 3-NP decreased mitochondrial function and increased lipid peroxidation, JZL184 attenuated both markers. The protective effects evoked by JZL184 on the 3-NP-induced mitochondrial dysfunction were primarily mediated by activation of cannabinoid receptor 2 (CB2R), as evidenced by their inhibition by the selective CB2R inverse agonist JTE907. The cannabinoid receptor 1 (CB1R) also participated in this effect in a lesser extent, as evidenced by the CB1R antagonist/inverse agonist AM281. In contrast, activation of CB1R, but not CB2R, was responsible for the protective effects of JZL184 on the 3-NP-iduced lipid peroxidation. Protective effects of JZL184 were confirmed in other toxic models involving excitotoxicity and oxidative damage as internal controls. In cortical slices, JZL184 ameliorated the 3-NP-induced loss of mitochondrial function, the increase in lipid peroxidation, and the inhibition of succinate dehydrogenase (mitochondrial complex II) activity, and these effects were independent on CB1R and CB2R, as evidenced by the lack of effects of AM281 and JTE907, respectively. Our novel results provide experimental evidence that the differential protective effects exerted by JZL184 on the early toxic effects induced by 3-NP in brain synaptosomes and cortical slices involve MAGL inhibition, and possibly the subsequent accumulation of 2-AG. These effects involve pro-energetic and redox modulatory mechanisms that may be either dependent or independent of cannabinoid receptors' activation.


Assuntos
Endocanabinoides , Sinaptossomos , Ratos , Animais , Sinaptossomos/metabolismo , Monoacilglicerol Lipases/metabolismo , Receptores de Canabinoides , Agonismo Inverso de Drogas , Encéfalo/metabolismo , Estresse Oxidativo , Benzodioxóis/farmacologia , Receptor CB1 de Canabinoide
16.
J Neurol ; 269(9): 4581-4603, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788744

RESUMO

The SARS-CoV-2 pandemic has raised particular concern for people with Multiple Sclerosis, as these people are believed to be at increased risk of infection, especially those being treated with disease-modifying therapies. Therefore, the objective of this review was to describe how COVID-19 affects people who suffer from Multiple Sclerosis, evaluating the risk they have of suffering an infection by this virus, according to the therapy to which they are subjected as well as the immune response of these patients both to infection and vaccines and the neurological consequences that the virus can have in the long term. The results regarding the increased risk of infection due to treatment are contradictory. B-cell depletion therapies may cause patients to have a lower probability of generating a detectable neutralizing antibody titer. However, more studies are needed to help understand how this virus works, paying special attention to long COVID and the neurological symptoms that it causes.


Assuntos
COVID-19 , Esclerose Múltipla , Anticorpos Antivirais , COVID-19/complicações , Vacinas contra COVID-19/efeitos adversos , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
17.
CNS Neurol Disord Drug Targets ; 21(7): 557-573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34370648

RESUMO

Transcranial Magnetic Stimulation (TMS) is widely used in neurophysiology to study cortical excitability. Research over the last few decades has highlighted its added value as a potential therapeutic tool in the treatment of a broad range of psychiatric disorders. More recently, a number of studies have reported beneficial and therapeutic effects for TMS in neurodegenerative conditions and strokes. Yet, despite its recognised clinical applications and considerable research using animal models, the molecular and physiological mechanisms through which TMS exerts its beneficial and therapeutic effects remain unclear. They are thought to involve biochemical-molecular events affecting membrane potential and gene expression. In this aspect, the dopaminergic system plays a special role. This is the most directly and selectively modulated neurotransmitter system, producing an increase in the flux of dopamine (DA) in various areas of the brain after the application of repetitive TMS (rTMS). Other neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA) have shown a paradoxical response to rTMS. In this way, their levels increased in the hippocampus and striatum but decreased in the hypothalamus and remained unchanged in the mesencephalon. Similarly, there are sufficient evidence that TMS up-regulates the gene expression of BDNF (one of the main brain neurotrophins). Something similar occurs with the expression of genes such as c-Fos and zif268 that encode trophic and regenerative action neuropeptides. Consequently, the application of TMS can promote the release of molecules involved in neuronal genesis and maintenance. This capacity may mean that TMS becomes a useful therapeutic resource to antagonize processes that underlie the previously mentioned neurodegenerative conditions.


Assuntos
Fármacos Neuroprotetores , Estimulação Magnética Transcraniana , Animais , Encéfalo/metabolismo , Dopamina , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Humanos , Neurotransmissores , Estimulação Magnética Transcraniana/métodos
18.
Neurotox Res ; 40(3): 814-824, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35476314

RESUMO

Thallium (Tl+) is a heavy metal that causes toxicity in several organs, including the brain. Its cytotoxic profile, combined with its affinity for tumor cells when used as a radioligand for labeling these cells, suggests its potential use as antitumor therapy. In this study, glioblastoma cell lines C6 (from rat) and U373 (from human) were exposed to increased concentrations of thallium(I) acetate (5, 10, 50, 100, or 200 µM) and several toxic endpoints were evaluated, including loss of confluence and morphological changes, loss of cell viability, changes in cell cycle, and apoptosis. Tl+ was detected in cells exposed to thallium(I) acetate, demonstrating efficient uptake mechanism. Confluence in both cell lines decreased in a concentration-dependent manner (50-200 µM), while morphological changes (cell shrinkage and decreased cell volume) were more evident at exposures to higher Tl+ concentrations. For both parameters, the effects of Tl+ were more prominent in C6 cells compared to U373 cells. The same trend was observed for cell viability, with Tl+ affecting this parameter in C6 cells at low concentrations, whereas U373 cells showed greater resistance, with significant changes observed only at the higher concentrations. C6 and U373 cells treated with Tl+ also showed morphological characteristics corresponding to apoptosis. The cytotoxic effects of Tl+ were also assessed in neural and astrocytic primary cultures from the whole rat brain. Primary neural and astrocytic cultures were less sensitive than C6 and U373 cells, showing changes in cell viability at 50 and 100 µM concentrations, respectively. Cell cycle in both brain tumor cell lines was altered by Tl+ in G1/G2 and S phases. In addition, when combined with temozolamide (500 µM), Tl+ elicited cell cycle alterations, increasing SubG1 population. Combined, our novel results characterize and validate the cytotoxic and antiproliferative effects of Tl+ in glioblastoma cells.


Assuntos
Antineoplásicos , Glioblastoma , Animais , Antineoplásicos/farmacologia , Apoptose , Técnicas de Cultura de Células , Ciclo Celular , Glioblastoma/metabolismo , Ratos , Tálio/toxicidade
19.
Biomedicines ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203631

RESUMO

CCR6 is a chemokine receptor highly implicated in inflammatory diseases and could be a potential therapeutic target; however, no therapeutic agents targeting CCR6 have progressed into clinical evaluation. Development of a high-throughput screening assay for CCR6 should facilitate the identification of novel compounds against CCR6. To develop a cell-based assay, RBL-2H3 cells were transfected with plasmids encoding ß-hexosaminidase and CCR6. Intracellular calcium mobilization of transfected cells was measured with a fluorescent substrate using the activity of released hexosaminidase as readout of the assay. This stable, transfected cell showed a specific signal to the background ratio of 19.1 with low variability of the signal along the time. The assay was validated and optimized for high-throughput screening. The cell-based calcium mobilization assay responded to the specific CCR6 ligand, CCL20, in a dose-dependent manner with an EC50 value of 10.72 nM. Furthermore, the assay was deemed robust and reproducible with a Z' factor of 0.63 and a signal window of 7.75. We have established a cell-based high-throughput calcium mobilization assay for CCR6 receptor. This assay monitors calcium mobilization, due to CCR6h activation by CCL20, using hexosaminidase activity as readout. This assay was proved to be robust, easy to automate and could be used as method for screening of CCR6 modulators.

20.
Mol Med Rep ; 25(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35119081

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and brain neuronal loss. A pioneering field of research in AD is brain stimulation via electromagnetic fields (EMFs), which may produce clinical benefits. Noninvasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), have been developed to treat neurological and psychiatric disorders. The purpose of the present review is to identify neurobiological changes, including inflammatory, neurodegenerative, apoptotic, neuroprotective and genetic changes, which are associated with repetitive TMS (rTMS) treatment in patients with AD. Furthermore, it aims to evaluate the effect of TMS treatment in patients with AD and to identify the associated mechanisms. The present review highlights the changes in inflammatory and apoptotic mechanisms, mitochondrial enzymatic activities, and modulation of gene expression (microRNA expression profiles) associated with rTMS or sham procedures. At the molecular level, it has been suggested that EMFs generated by TMS may affect the cell redox status and amyloidogenic processes. TMS may also modulate gene expression by acting on both transcriptional and post­transcriptional regulatory mechanisms. TMS may increase brain cortical excitability, induce specific potentiation phenomena, and promote synaptic plasticity and recovery of impaired functions; thus, it may re­establish cognitive performance in patients with AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Doença de Alzheimer/genética , Animais , Antioxidantes , Disfunção Cognitiva/terapia , Função Executiva , Humanos , Memória , Plasticidade Neuronal , Fármacos Neuroprotetores/uso terapêutico , Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA