Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616096

RESUMO

The high performance of perovskite solar cells was produced with the help of an electron transport layer (ETL) and hole transport layer. The film ETL (mesoporous (meso)-TiO2/carbon dot) boosted the efficiency of the perovskite solar cells. A perovskite cell was fabricated by a coating of carbon dot on a meso-TiO2 ETL. The fabricated meso-TiO2/carbon dot-based device has decreased the pin-holes of the perovskite film layer compared to the meso-TiO2-based device, which boosted 3% of the averaged PCE value of the devices. The UV-visible spectroscopy confirmed that the meso-TiO2/carbon dot ETL showed better absorbance, that is, absorbed more incident light than meso-TiO2 ETL to generate higher power conversion efficiency. Coating of carbon dot on meso-TiO2 reduced carrier recombination, and fadeaway of the perovskite film cracks. The X-ray diffraction spectra displayed the removal of the perovskite component after spin-coating of carbon dot to the meso-TiO2 ETL, indicating that the suppression of non-radiative recombination improves the device performance compared to meso-TiO2 ETL. The stability after four weeks on the performance of the device was improved to be 92% by depositing carbon dot on meso-TiO2 ETL compared to the meso-TiO2 ETL-based device (82%). Thus, the high-quality perovskite cell was fabricated by coating carbon dot on a meso-TiO2 ETL, because the electron transport between ETL and perovskite film layer was improved by the injection of electrons from carbon dot.

2.
Nanotechnology ; 20(30): 305201, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19581691

RESUMO

Low-temperature (approximately 150 degrees C), atomic-layer-deposited Al(2)O(3) films on nanoporous TiO2 electrodes of dye-sensitized solar cells (DSSCs) were investigated using electron spectroscopy. The power conversion efficiency (PCE) of the DSSCs was increased from 5.7% to 6.5%, an improvement of 14%, with one monolayer of Al(2)O(3) with a thickness of approximately 0.2 nm. The formation of Ti-O-Al(OH)(2) and interfacial dipole layers exhibited a strong influence on the work function of the Al(2)O(3) over-layers, while the thicker Al(2)O(3) over-layers caused the values of valence band maximum and band gap to approach the values associated with pure Al(2)O(3). A work function difference (Delta Phi(A-T)) of 0.4 eV and a recombination barrier height (epsilon(RB)) of 0.1 eV were associated with the highest PCE achieved by the first monolayer of the Al(2)O(3) layer. Thicker Al(2)O(3) over-layers, however, caused significant reduction of PCE with negative Delta Phi(T-A) and increased interfacial energy barrier height ((*)epsilon(IB)) between the N719 dyes and TiO2 electrodes. It was concluded that the PCE of the DSSCs may correlate with Delta Phi(A-T), epsilon(RB), and (*)epsilon(IB) resulting from various thicknesses of the Al(2)O(3) over-layers and that interfacial reactions, such as the formation of Ti-O-Al(OH)(2) and dipole layers, play an important role in determining the interfacial energy levels required to achieve optimal performance of dye-sensitized TiO2 solar cells.

3.
Nanoscale ; 10(35): 16657-16666, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30155530

RESUMO

GePt3 and Ge2Pt nanoparticles were synthesized via a solution colloidal method as catalysts for dye-sensitized solar cells (DSSC) and the hydrogen evolution reaction (HER). The shape, size, arrangement, phases and crystalline structures of Ge-Pt nanoparticles were determined, and the ability to be dispersed in nonpolar solvents enabled them to form a catalyst ink with a stable ejection for the spray coating technique. A series of electrochemical analyses confirmed the catalytic properties of Ge-Pt nanoparticles toward the I-/I3- redox reaction system. The DSSC using GePt3 nanoparticles as the counter electrode exhibited excellent power conversion efficiency (PCE) of 8.04% at 0.16 cm2, which was comparable to that of a DSSC using Pt as the counter electrode (8.0%); it also exhibited an average PCE of 7.26% even at a large working area (2 cm2). In addition, the GePt3 catalyst exhibited excellent HER electrocatalytic performance with a large current density and a low Tafel slope, and it could stably operate at a working area of up to 5 cm2 with a low over potential (<0.06 V) to achieve 10 mA cm-2 cathodic current. This study provides fundamental insights into the preparation of germanium-platinum intermetallic compound catalysts at the nanoscale, which can be beneficial for the design and development of clean energy devices.

4.
J Phys Chem Lett ; 8(8): 1824-1830, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28387117

RESUMO

Indoor utilization of emerging photovoltaics is promising; however, efficiency characterization under room lighting is challenging. We report the first round-robin interlaboratory study of performance measurement for dye-sensitized photovoltaics (cells and mini-modules) and one silicon solar cell under a fluorescent dim light. Among 15 research groups, the relative deviation in power conversion efficiency (PCE) of the samples reaches an unprecedented 152%. On the basis of the comprehensive results, the gap between photometry and radiometry measurements and the response of devices to the dim illumination are identified as critical obstacles to the correct PCE. Therefore, we use an illuminometer as a prime standard with a spectroradiometer to quantify the intensity of indoor lighting and adopt the reverse-biased current-voltage (I-V) characteristics as an indicator to qualify the I-V sampling time for dye-sensitized photovoltaics. The recommendations can brighten the prospects of emerging photovoltaics for indoor applications.

5.
J Phys Chem B ; 109(29): 14000-5, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16852757

RESUMO

We have systematically examined the photoluminescence (PL) and electroluminescence (EL) behavior of blends comprising two efficient red phosphors doped, respectively, into the blue-emitting polyfluorene derivatives PF-TPA-OXD and PF-OXD. The host polymers, which contain both hole- and electron-transporting or merely electron-transporting side chains, are capable of facilitating charge injection and transport. After determining the HOMO and LUMO energy levels of these materials, we were able to match the dopant with its most suitable host to achieve the direct formation and confinement of an exciton at the dopant. This configuration also leads to a reduction in the electrical excitation of the host polymer, which in turn decreases the degree of exciton loss arising from nonradiative decay of the host triplet. Using this approach, we were able to realize the production of high-performance red-electrophosphorescent devices. For Os(fppz)-doped devices, we obtain a balanced charge recombination in conjunction with higher current and luminance when using PF-TPA-OXD as the host matrix; this device reached a maximum external quantum efficiency of 8.37% with a peak brightness of 16 720 cd/m2. The absence of charge-transporting pendant units, i.e., the device fabricated from poly[9,9-dioctylfluorene-2,7-diyl] (POF), led, however, to relatively poor electroluminescence characteristics (5.81% and 2144 cd/m2).

6.
ACS Nano ; 7(10): 9443-51, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23992127

RESUMO

We report the development of Co9S8 nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co9S8 nanocrystal is carried out via a noninjection reaction by mixing anhydrous CoCl2 with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co9S8 nanocrystals possess excellent catalytic ability with respect to I(-)/I3(-) redox reactions. The Co9S8 nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co9S8 thin films on different substrates by using a spray deposition technique. These Co9S8 films are used as counter electrodes assembled with dye-adsorbed TiO2 photoanodes to fabricate DSSC devices having a working area of 2 cm(2) and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm(2)-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries.

7.
Inorg Chem ; 45(25): 10188-96, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-17140226

RESUMO

Triosmium cluster complexes [Os3(CO)8(fppz)2] (2a) and [Os3(CO)8(fptz)2] (2b) bearing two 2-pyridyl azolate ligands were synthesized in an attempt to establish the reaction mechanism that gives rise to the blue-emitting phosphorescent complexes [Os(CO)2(fppz)2] (1a) and [Os(CO)2(fptz)2] (1b) [(fppz)H = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole; (fptz)H = 3-(trifluoromethyl)-5-(2-pyridyl)triazole]. X-ray structural analysis of 2b showed an open triangular metal framework incorporating multisite-coordinated 2-pyridyltriazolate ligands. Treatment of 2 with the respective 2-pyridylazolate ligand led to the formation of blue-emitting complex 1b, confirming their intermediacy, while the reaction of 2b with phosphine ligand PPh2Me afforded two hitherto novel hydride complexes 3 and 4, for which the reversible interconversion was clearly established at higher temperatures (> 180 degrees C). The single-crystal X-ray diffraction analyses of 3 and 4 confirmed their monometallic and isomeric nature, together with the coordination of two phosphine ligands located in the trans-disposition and one CO and one hydride located opposite to the pyridyl triazolate chelate. Subtle differences in photophysical properties were examined for isomers 3 and 4 on the basis of steady state absorption and emission, the relaxation dynamics, and temperature-dependent luminescent studies. The results, in combination with time-dependent density function theory (TDDFT) calculations, provide fundamental insights into the future design and preparation of highly efficient phosphorescent emitters.

8.
Chemistry ; 11(21): 6347-57, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16086340

RESUMO

The rational design and syntheses of a new series of Os(II) complexes with formula [Os(fppz)(2)(CO)(L)] (1: L=4-dimethylaminopyridine; 2: L = pyridine; 3: L = 4,4'-bipyridine; 4: L = pyridazine; 5: L = 4-cyanopyridine), bearing two (2-pyridyl)pyrazolate ligands (fppz) together with one carbonyl and one N-heterocyclic ligand at the axial positions are reported. Single-crystal X-ray diffraction studies of, for example, 2 reveal a distorted octahedral geometry in which both fppz ligands reside in the equatorial plane with a trans configuration and adopt a bent arrangement at the metal center with a dihedral angle of approximately 23 degrees , while the carbonyl and pyridine ligands are located at the axial positions. Variation of the axial N-heterocyclic ligand leads to remarkable changes in the photophysical properties as the energy gap and hence the phosphorescence peak wavelength can be tuned. For complexes 1 and 2 the solvent-polarity-independent phosphorescence originates from a combination of intraligand (3)pi-pi* ((3)ILCT) and metal-to-ligand charge transfer transitions ((3)MLCT). In sharp contrast, as supported by cyclic voltammetry measurements and theoretical calculations, complexes 3--5 exhibit mainly ligand-to-ligand charge transfer (LLCT) transitions, resulting in a large dipolar change. The phosphorescence of complexes 3--5 thus exhibits a strong dependence on the polarity of the solvent, being shifted for example, from 560 (in C(6)H(12)) to 665 nm (in CH(3)CN) and from 603 (in C(6)H(12)) to 710 nm (in CH(3)CN) for complexes 3 and 5, respectively. The results clearly demonstrate that a simple, straightforward derivatization of the axial N-heterocyclic ligand drastically alters the excitation properties per se from intraligand charge transfer (ILCT) to LLCT transitions. The latter exhibit remarkable LLCT phosphorescence solvatochromism so that a broad range of color tunability can be achieved.

9.
Chemistry ; 10(24): 6255-64, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15526313

RESUMO

A new series of Os(II)-based carbonyl complexes cis(CO),trans(Npy,Npy),cis(Ntz,Ntz)-[Os(CO)2(bptz)2] (1), cis(CO),cis(Npy,Npy),trans(Ntz,Ntz)-[Os(bptz)2(CO)2] (2), and cis(CO),trans(Npy,Npy),cis(Ntz,Ntz)-[Os(CO)2(fptz)2] (3), where bptz and fptz denote 3-tert-butyl-5-(2-pyridyl)- and 3-trifluoromethyl-5-(2-pyridyl)-1,2,4-triazolate, respectively, have been designed and synthesized in an effort to achieve high efficiency, room-temperature blue phosphorescence. Although 1 and 2 are geometric isomers, remarkably different excited-state relaxation pathways were observed. Complex 1 exhibits strong phosphorescence in CH3CN (Phi(p) approximately 0.47) and as a single crystal at room temperature, whereas complex 2 is nearly nonemissive under similar conditions. The associated relaxation dynamics have been comprehensively investigated by spectroscopic and relaxation dynamics as well as by theoretical approaches. Our results lead us to the conclusion that for complex 2, the "loose bolt" effect of metal-ligand bonding interactions plays a crucial role in the fast radiationless deactivation of this type of geometrical isomer. Fine adjustment can also be achieved by functionalizing the ligands so that the electron-withdrawing nature of the CF3 group in 3 stabilizes the HOMO of the triazolate moiety, thus moving the emission further into the pure "blue" region; this results in highly efficient phosphorescence and renders 3 particularly attractive for application in blue OLED devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA