RESUMO
Translation of most cellular mRNAs in eukaryotes proceeds through a cap-dependent pathway, whereby the cap-binding complex, eIF4F, anchors the preinitiation complex at the 5' end of mRNAs and regulates translation initiation. The requirement of Leishmania to survive in changing environments can explain why they encode multiple eIF4E (LeishIF4Es) and eIF4G (LeishIF4Gs) paralogs, as each could be assigned a discrete role during their life cycle. Here we show that the expression and activity of different LeishIF4Es change during the growth of cultured promastigotes, urging a search for regulatory proteins. We describe a novel LeishIF4E-interacting protein, Leish4E-IP2, which contains a conserved Y(X)4LΦ IF4E-binding-motif. Despite its capacity to bind several LeishIF4Es, Leish4E-IP2 was not detected in m7GTP-eluted cap-binding complexes, suggesting that it could inhibit the cap-binding activity of LeishIF4Es. Using a functional assay, we show that a recombinant form of Leish4E-IP2 inhibits the cap-binding activity of LeishIF4E-1 and LeishIF4E-3. Furthermore, we show that transgenic parasites expressing a tagged version of Leish4E-IP2 also display reduced cap-binding activities of tested LeishIF4Es, and decreased global translation. Given its ability to bind more than a single LeishIF4E, we suggest that Leish4E-IP2 could serve as a broad-range repressor of Leishmania protein synthesis.
Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , Leishmania/metabolismo , Proteínas de Protozoários/metabolismo , Capuzes de RNA/metabolismo , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Biossíntese de Proteínas , Proteínas de Protozoários/isolamento & purificaçãoRESUMO
Leishmania parasites cycle between sand fly vectors and mammalian hosts, transforming from extracellular promastigotes that reside in the vectors' alimentary canal to obligatory intracellular non-motile amastigotes that are harbored by macrophages of the mammalian hosts. The transition between vector and host exposes them to a broad range of environmental conditions that induces a developmental program of gene expression, with translation regulation playing a key role. The Leishmania genome encodes six paralogs of the cap-binding protein eIF4E. All six isoforms show a relatively low degree of conservation with eIF4Es of other eukaryotes, as well as among themselves. This variability could suggest that they have been assigned discrete roles that could contribute to their survival under the changing environmental conditions. Here, we describe LeishIF4E-5, a LeishIF4E paralog. Despite the low sequence conservation observed between LeishIF4E-5 and other LeishIF4Es, the three aromatic residues in its cap-binding pocket are conserved, in accordance with its cap-binding activity. However, the cap-binding activity of LeishIF4E-5 is restricted to the promastigote life form and not observed in amastigotes. The overexpression of LeishIF4E-5 shows a decline in cell proliferation and an overall reduction in global translation. Immuno-cytochemical analysis shows that LeishIF4E-5 is localized in the cytoplasm, with a non-uniform distribution. Mass spectrometry analysis of proteins that co-purify with LeishIF4E-5 highlighted proteins involved in RNA metabolism, along with two LeishIF4G paralogs, LeishIF4G-1 and LeishIF4G-2. These vary in their conserved eIF4E binding motif, possibly suggesting that they can form different complexes.
Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Leishmania major/genética , Leishmania/genética , Proteínas de Ligação ao Cap de RNA/genética , Animais , Citoplasma/genética , Citoplasma/parasitologia , Humanos , Leishmania/parasitologia , Leishmania major/patogenicidade , Ligação Proteica/genética , Isoformas de Proteínas/genética , Proteínas de Protozoários/genéticaRESUMO
Leishmania parasites are digenetic protists that shuffle between sand fly vectors and mammalian hosts, transforming from flagellated extracellular promastigotes that reside within the intestinal tract of female sand flies to the obligatory intracellular and non-motile amastigotes within mammalian macrophages. Stage differentiation is regulated mainly by post-transcriptional mechanisms, including translation regulation. Leishmania parasites encode six different cap-binding proteins, LeishIF4E1-6, that show poor conservation with their counterparts from higher eukaryotes and among themselves. In view of the changing host milieu encountered throughout their life cycle, we propose that each LeishIF4E has a unique role, although these functions may be difficult to determine. Here we characterize LeishIF4E-6, a unique eIF4E ortholog that does not readily associate with m7GTP cap in either of the tested life forms of the parasite. We discuss the potential effect of substituting two essential tryptophan residues in the cap-binding pocket, expected to be involved in the cap-binding activity, as judged from structural studies in the mammalian eIF4E. LeishIF4E-6 binds to LeishIF4G-5, one of the five eIF4G candidates in Leishmania. However, despite this binding, LeishIF4E-6 does not appear to function as a translation factor. Its episomal overexpression causes a general reduction in the global activity of protein synthesis, which was not observed in the hemizygous deletion mutant generated by CRISPR-Cas9. This genetic profile suggests that LeishIF4E-6 has a repressive role. The interactome of LeishIF4E-6 highlights proteins involved in RNA metabolism such as the P-body marker DHH1, PUF1 and an mRNA-decapping enzyme that is homologous to the TbALPH1.
Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , Leishmania/metabolismo , Proteínas de Protozoários/metabolismo , Análogos de Capuz de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Sequência de Aminoácidos , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/genética , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Biossíntese de Proteínas , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Análogos de Capuz de RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Homologia de SequênciaRESUMO
Sepsis is a consequence of systemic bacterial infections leading to hyper activation of immune cells by bacterial products resulting in enhanced release of mediators of inflammation. Endotoxin (LPS) is a major component of the outer membrane of Gram negative bacteria and a critical factor in pathogenesis of sepsis. Development of antagonists that inhibit the storm of inflammatory molecules by blocking Toll like receptors (TLR) has been the main stay of research efforts. We report here that a filarial glycoprotein binds to murine macrophages and human monocytes through TLR4 and activates them through alternate pathway and in the process inhibits LPS mediated classical activation which leads to inflammation associated with endotoxemia. The active component of the nematode glycoprotein mediating alternate activation of macrophages was found to be a carbohydrate residue, Chitohexaose. Murine macrophages and human monocytes up regulated Arginase-1 and released high levels of IL-10 when incubated with chitohexaose. Macrophages of C3H/HeJ mice (non-responsive to LPS) failed to get activated by chitohexaose suggesting that a functional TLR4 is critical for alternate activation of macrophages also. Chitohexaose inhibited LPS induced production of inflammatory molecules TNF-α, IL-1ß and IL-6 by macropahges in vitro and in vivo in mice. Intraperitoneal injection of chitohexaose completely protected mice against endotoxemia when challenged with a lethal dose of LPS. Furthermore, Chitohexaose was found to reverse LPS induced endotoxemia in mice even 6/24/48 hrs after its onset. Monocytes of subjects with active filarial infection displayed characteristic alternate activation markers and were refractory to LPS mediated inflammatory activation suggesting an interesting possibility of subjects with filarial infections being less prone to develop of endotoxemia. These observations that innate activation of alternate pathway of macrophages by chtx through TLR4 has offered novel opportunities to cell biologists to study two mutually exclusive activation pathways of macrophages being mediated through a single receptor.
Assuntos
Endotoxemia/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Monócitos/imunologia , Oligossacarídeos/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Arginase/biossíntese , Células da Medula Óssea , Células Cultivadas , Humanos , Mediadores da Inflamação/imunologia , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Oligossacarídeos/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/biossínteseRESUMO
Germ-line retroviral insertions in vertebrate genomes are implicated in the modulation of host immune responses. We demonstrate that CBA/J mice, which carry the proviral integrants mammary tumor virus locus 6 (Mtv6) and mammary tumor virus locus 7 (Mtv7), are less resistant to infection with the protozoan pathogen Leishmania major compared with closely related but Mtv6-negative and Mtv7-negative CBA/CaJ mice. Although both strains generated comparable L. major-specific CD4 T cell frequencies, T cells from CBA/J mice made much less interferon γ (IFN-γ). L. major-infected CBA/CaJ dendritic cells primed L. major-specific and allospecific IFN-γ-producing CD4 T cells better in vivo and in vitro, respectively, than CBA/J dendritic cells did. L. major susceptibility appeared to be associated with Mtv7, and v-Sag-7 superantigen expression and L. major infection together reduced the ability of an antigen-presenting cell line to prime alloresponder CD4 T cells for IFN-γ commitment. These data show that an endogenous superantigen can interact with L. major infection to alter antigen-presenting cell properties and modulate T cell cytokine commitment, with implications for human susceptibility to infectious diseases.
Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Leishmaniose/imunologia , Glicoproteínas de Membrana/imunologia , Superantígenos/imunologia , Animais , Antígenos Virais/genética , Células Cultivadas , Predisposição Genética para Doença , Interferon gama/imunologia , Leishmania major/imunologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos CBA , Camundongos EndogâmicosRESUMO
Leishmania parasites cycle between sand-fly vectors and mammalian hosts adapting to alternating environments by stage-differentiation accompanied by changes in the proteome profiles. Translation regulation plays a central role in driving the differential program of gene expression since control of gene regulation in Leishmania is mostly post-transcriptional. The Leishmania genome encodes six eIF4E paralogs, some of which bind a dedicated eIF4G candidate, and each eIF4E is assumed to have specific functions with perhaps some overlaps. However, LeishIF4E2 does not bind any known eIF4G ortholog and was previously shown to comigrate with the polysomal fractions of sucrose gradients in contrast to the other initiation factors that usually comigrate with pre-initiation and initiation complexes. Here we deleted one of the two LeishIF4E2 gene copies using the CRISPR-Cas9 methodology. The deletion caused severe alterations in the morphology of the mutant cells that became round, small, and equipped with a very short flagellum that did not protrude from its pocket. Reduced expression of LeishIF4E2 had no global effect on translation and growth, unlike other LeishIF4Es; however, there was a change in the proteome profile of the LeishIF4E2(+/-) cells. Upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. The downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. Our results also suggest that the individual LeishIF4Es perform unique functions.
Assuntos
Adaptação Fisiológica/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Leishmania/genética , Sequência de Aminoácidos/genética , Animais , Antígenos de Superfície/biossíntese , Antígenos de Superfície/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica/genética , Humanos , Macrófagos/parasitologia , Psychodidae/parasitologia , Alinhamento de SequênciaRESUMO
Ficolins are pattern recognition molecules that are involved in innate immune defense. Ficonin-2 (FCN2) has a specific affinity for lipoteichoic acid present in the cell wall of Streptococcus pyogenes, an etiological agent for rheumatic heart disease (RHD). We have estimated FCN2 serum levels and analyzed the functional variants of FCN2 in 400 RHD patients, 617 healthy controls, and 581 individuals belonged to various ethnic populations, who are inhabited in various geographical regions of India. Our study revealed that the FCN2 -986A and +6359T alleles were the risk factors for RHD susceptibility (p = 0.0007 for -986G>A; p = 0.0004 for +6359C>T). The haplotype AGGT (p = 0.0024) was observed to be a risk factor for RHD susceptibility, and the haplotype GGAC (p = 0.002) was found to confer protection against RHD. The level of serum FCN2 was significantly higher in controls (p < 0.0001) and in controls with GGAC haplotypes (p < 0.0001). The frequency of the risk alleles -986A and +6359T was found to be more prevalent in Northern and North-Western (Indo-European) India. The protective GGAC haplotype was found more prevalent in Eastern (Tibeto-Burman) and South-Western (Dravidian) India. Alleles -986A and +6359T were in positive correlation with the prevalence of RHD (regression coefficient = 1.84 and 1.94, respectively), whereas GGAC haplotype was in negative correlation with prevalence of RHD (regression coefficient = -1.71). In conclusion, we found that low level of serum ficolin-2 is significantly associated with RHD. Further, FCN2 -986A and +6359T alleles and AGGT haplotype are associated with increased susceptibility to RHD, while GGAC haplotype is associated with moderate protection against RHD.
Assuntos
Lectinas/genética , Polimorfismo de Nucleotídeo Único , Cardiopatia Reumática/genética , Adulto , Idoso , Feminino , Haplótipos , Humanos , Índia , Masculino , Pessoa de Meia-Idade , FicolinasRESUMO
Leishmania parasites cycle between sand-fly vectors and mammalian hosts, adapting to changing environmental conditions by driving a stage-specific program of gene expression, which is tightly regulated by translation processes. Leishmania encodes six eIF4E orthologs (LeishIF4Es) and five eIF4G candidates, forming different cap-binding complexes with potentially varying functions. Most LeishIF4E paralogs display temperature sensitivity in their cap-binding activity, except for LeishIF4E1, which maintains its cap-binding activity under all conditions. We used the CRISPR-Cas9 system to successfully generate a null mutant of LeishIF4E1 and examine how its elimination affected parasite physiology. Although the LeishIF4E1-/- null mutant was viable, its growth was impaired, in line with a reduction in global translation. As a result of the mutation, the null LeishIF4E1-/- mutant had a defective morphology, as the cells were round and unable to grow a normal flagellum. This was further emphasized when the LeishIF4E1-/- cells failed to develop the promastigote morphology once they shifted from conditions that generate axenic amastigotes (33°C, pH 5.5) back to neutral pH and 25°C, and they maintained their short flagellum and circular structure. Finally, the LeishIF4E1-/- null mutant displayed difficulty in infecting cultured macrophages. The morphological changes and reduced infectivity of the mutant may be related to differences in the proteomic profile of LeishIF4E1-/- cells from that of controls. All defects monitored in the LeishIF4E1-/- null mutant were reversed in the add-back strain, in which expression of LeishIF4E1 was reconstituted, establishing a strong link between the cellular defects and the absence of LeishIF4E1 expression.IMPORTANCELeishmania parasites are the causative agents of a broad spectrum of diseases. The parasites migrate between sand-fly vectors and mammalian hosts, adapting to changing environments by driving a regulated program of gene expression, with translation regulation playing a key role. The leishmanias encode six different paralogs of eIF4E, the cap-binding translation initiation factor. Since these vary in function, expression profile, and assemblage, it is assumed that each is assigned a specific role throughout the life cycle. Using the CRISPR-Cas9 system for Leishmania, we generated a null mutant of LeishIF4E1, eliminating both alleles. Although the mutant cells were viable, their morphology was altered and their ability to synthesize the flagellum was impaired. Elimination of LeishIF4E1 affected their protein expression profile and decreased their ability to infect cultured macrophages. Restoring LeishIF4E1 expression restored the affected features. This study highlights the importance of LeishIF4E1 in diverse cellular events during the life cycle of Leishmania.
Assuntos
Fator de Iniciação 4E em Eucariotos/deficiência , Fator de Iniciação 4E em Eucariotos/metabolismo , Deleção de Genes , Leishmania/crescimento & desenvolvimento , Leishmania/patogenicidade , Proteoma/análise , Animais , Sobrevivência Celular , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Leishmania/citologia , Leishmania/genética , Macrófagos/parasitologia , Camundongos , Células RAW 264.7 , TemperaturaRESUMO
The genomes of Leishmania and trypanosomes encode six paralogs of the eIF4E cap-binding protein, known in other eukaryotes to anchor the translation initiation complex. In line with the heteroxenous nature of these parasites, the different LeishIF4E paralogs vary in their biophysical features and their biological behavior. We therefore hypothesize that each has a specialized function, not limited to protein synthesis. Of the six paralogs, LeishIF4E-3 has a weak cap-binding activity. It participates in the assembly of granules that store inactive transcripts and ribosomal proteins during nutritional stress that is experienced in the sand fly. We investigated the role of LeishIF4E-3 in Leishmania mexicana promastigotes using the CRISPR-Cas9 system. We deleted one of the two LeishIF4E-3 alleles, generating a heterologous deletion mutant with reduced LeishIF4E-3 expression. The mutant showed a decline in de novo protein synthesis and growth kinetics, altered morphology, and impaired infectivity. The mutant cells were rounded and failed to transform into the nectomonad-like form, in response to purine starvation. Furthermore, the infectivity of macrophage cells by the LeishIF4E-3(+/-) mutant was severely reduced. These phenotypic features were not observed in the addback cells, in which expression of LeishIF4E-3 was restored. The observed phenotypic changes correlated with the profile of transcripts associated with LeishIF4E-3. These were enriched for cytoskeleton- and flagellum-encoding genes, along with genes for RNA binding proteins. Our data illustrate the importance of LeishIF4E-3 in translation and in the parasite virulence.IMPORTANCELeishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined.
Assuntos
Alelos , Sistemas CRISPR-Cas , Deleção de Genes , Leishmania mexicana/patogenicidade , Proteínas de Protozoários/genética , Animais , Leishmania mexicana/genética , Macrófagos/parasitologia , Camundongos , Mutação , Células RAW 264.7RESUMO
BACKGROUND: The host genetic factors play important role in determining the outcome of visceral leishmaniasis (VL). Macrophage migration inhibitory factor (MIF) is an important host cytokine, which is a key regulator of innate immune system. Genetic variants in MIF gene have been found to be associated with several inflammatory and infectious diseases. Role of MIF is well documented in leishmaniasis diseases, including Indian visceral leishmaniasis, where elevated level of serum MIF has been associated with VL phenotypes. However, there was no genetic study to correlate MIF variants in VL, therefore, we aimed to study the possible association of three reported MIF gene variants -794 CATT, -173G > C and non-coding RNA gene LOC284889 in Indian VL phenotype. METHODS: Study subjects comprised of 214 VL patients along with ethnically and demographically matched 220 controls from VL endemic regions of Bihar state in India. RESULTS: We found no significant difference between cases and controls in allelic, genotypic and haplotype frequency of the markers analysed [-794 CATT repeats (χ2=0.86; p=0.35; OR=0.85; 95% CI=0.61-1.19); -173 G>C polymorphism (χ2=1.11; p=0.29; OR=0.83; 95% CI=0.59-1.16); and LOC284889 (χ2=0.78; p=0.37; OR=0.86; 95% CI=0.61-1.20)]. CONCLUSION: Since we did not find any significant differences between case and control groups, we conclude that sequencing of complete MIF gene and extensive study on innate and adaptive immunity genes may help in identifying genetic variations that are associated with VL susceptibility/resistance among Indians.
Assuntos
Predisposição Genética para Doença , Leishmaniose Visceral/epidemiologia , Fatores Inibidores da Migração de Macrófagos/genética , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Índia/epidemiologia , Leishmaniose Visceral/genética , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
We have developed a highly accurate and sensitive real-time polymerase chain reaction (PCR) assay to detect and quantify Leishmania parasites. The assay targets GP63, a highly conserved gene in Leishmania. We demonstrate that, with a single assay, we are able to detect and quantify several species of Leishmania. Our assay system detects Leishmania donovani and Leishmania major down to 0.1 parasite. The dynamic range of the assay extends over 6 log cycles of target, with an average correlation coefficient >0.988. In addition, we utilize a simple approach to distinguish between Leishmania species causing diverse spectra of disease. We have also used this assay to follow the course of cutaneous disease in CBA/CaJ mice, known to be resistant to L. major. The assay is sensitive enough to quantify parasite load in the absence of overt lesions and reveals a systemic distribution of Leishmania, which has implications for our understanding of the disease.
Assuntos
Leishmania donovani/isolamento & purificação , Leishmania major/isolamento & purificação , Leishmaniose/parasitologia , Reação em Cadeia da Polimerase/métodos , Animais , Sequência de Bases , Pé/parasitologia , Leishmania donovani/genética , Leishmania major/genética , Linfonodos/parasitologia , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos CBA , Dados de Sequência Molecular , Sensibilidade e Especificidade , Alinhamento de Sequência , Baço/parasitologiaRESUMO
Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Sirtuína 3/metabolismo , Umbeliferonas/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Angiotensina II/toxicidade , Animais , Antioxidantes/uso terapêutico , Aorta/citologia , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microscopia Confocal , NG-Nitroarginina Metil Éster/toxicidade , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/genética , Umbeliferonas/química , Umbeliferonas/uso terapêuticoRESUMO
BACKGROUND: Visceral leishmaniasis (VL) is a multifactorial disease, where the host genetics play a significant role in determining the disease outcome. The immunological role of anti-inflammatory cytokine, Interleukin 10 (IL10), has been well-documented in parasite infections and considered as a key regulatory cytokine for VL. Although VL patients in India display high level of IL10 in blood serum, no genetic study has been conducted to assess the VL susceptibility / resistance. Therefore, the aim of this study is to investigate the role of IL10 variations in Indian VL; and to estimate the distribution of disease associated allele in diverse Indian populations. METHODOLOGY: All the exons and exon-intron boundaries of IL10 were sequenced in 184 VL patients along with 172 ethnically matched controls from VL endemic region of India. RESULT AND DISCUSSION: Our analysis revealed four variations; rs1518111 (2195 A>G, intron), rs1554286 (2607 C>T, intron), rs3024496 (4976 T>C, 3' UTR) and rs3024498 (5311 A>G, 3' UTR). Of these, a variant g.5311A is significantly associated with VL (χ2=18.87; p =0.00001). In silico approaches have shown that a putative micro RNA binding site (miR-4321) is lost in rs3024498 mRNA. Further, analysis of the above four variations in 1138 individuals from 34 ethnic populations, representing different social and linguistic groups who are inhabited in different geographical regions of India, showed variable frequency. Interestingly, we have found, majority of the tribal populations have low frequency of VL ('A' of rs3024498); and high frequency of leprosy ('T' of rs1554286), and Behcet's ('A' of rs1518111) associated alleles, whereas these were vice versa in castes. Our findings suggest that majority of tribal populations of India carry the protected / less severe allele against VL, while risk / more severe allele for leprosy and Behcet's disease. This study has potential implications in counseling and management of VL and other infectious diseases.