Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Am Chem Soc ; 146(15): 10875-10888, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579119

RESUMO

Two isomeric pentacene dimers, each linked by a diamantane spacer, have been synthesized. These dimers are designed to provide experimental evidence to support quantum mechanical calculations, which predict the substitution pattern on the carbon-rich diethynyldiamantane spacer to be decisive in controlling the interpentacene coupling. Intramolecular singlet fission (i-SF) serves as a probe for the existence and strength of the electronic coupling between the two pentacenes, with transient absorption spectroscopy as the method of choice to characterize i-SF. 4,9-Substitution of diamantane provides a pentacene dimer (4,9-dimer) in which the two chromophores are completely decoupled and that, following photoexcitation, deactivates to the ground state analogous to a monomeric pentacene chromophore. Conversely, 1,6-substitution provides a pentacene dimer (1,6-dimer) that exhibits sufficiently strong coupling to drive i-SF, resulting in correlated triplet M(T1T1) yields close to unity and free triplet (T1 + T1) yields of ca. 50%. Thus, the diamantane spacer effectively switches "on" or "off" the coupling between the chromophores, based on the substitution pattern. The binary control of diamantane contrasts other known molecular spacers designed only to modulate the coupling strength between two pentacenes.

2.
Angew Chem Int Ed Engl ; : e202404014, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934233

RESUMO

We show an unexpected aggregation phenomenon of a long oligoyne (Py[16]) with 16 contiguous triple bonds and endcapped with bulky 3,5-bi(3,5-bis-tert-butylphenyl)pyridine groups. Aggregation of 1D p-conjugated oligoyne chains is rare, given the minimal p-p intermolecular interactions of the weakly polarizable polyyne chain, as well as its flexibility that works against self assembly. In dilute solutions, the reversible aggregation of Py[16] initiates at low temperature in the range of 140-180 K, and is not observed for shorter oligoynes in this series. Cryogenic UV-Vis electronic absorption spectra and vibrational Raman spectra with different laser wavelength lines tuning from in-resonance to off-resonance conditions have been used to extract the vibrational features characterizing the Monomer and aggregate species. Theoretical calculations complement the spectroscopic findings.

3.
Angew Chem Int Ed Engl ; 63(8): e202315064, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38092707

RESUMO

Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).

4.
J Am Chem Soc ; 145(33): 18260-18275, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37531628

RESUMO

Photon energy conversion can be accomplished in many different ways, including the two opposing manners, down-conversion (i.e., singlet fission, SF) and up-conversion (i.e., triplet-triplet annihilation up-conversion, TTA-UC). Both processes have the potential to help overcome the detailed balance limit of single-junction solar cells. Tetracene, in which the energies of the lowest singlet excited state and twice the triplet excited state are comparable, exhibits both down- and up-conversion. Here, we have designed meta-diethynylphenylene- and 1,3-diethynyladamantyl-linked tetracene dimers, which feature different electronic coupling, to characterize the interplay between intramolecular SF (intra-SF) and intramolecular TTA-UC (intra-TTA-UC) via steady-state and time-resolved absorption and fluorescence spectroscopy. Furthermore, we have used Pd-phthalocyanine as a sensitizer to enable intra-TTA-UC in the two dimers via indirect photoexcitation in the near-infrared part of the solar spectrum. The work is rounded off by temperature-dependent measurements, which outline key aspects of how thermal effects impact intra-SF and intra-TTA-UC in different dimers.

5.
J Am Chem Soc ; 145(17): 9548-9563, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083447

RESUMO

The goal of harnessing the theoretical potential of singlet fission (SF), a process in which one singlet excited state is split into two triplet excited states, has become a central challenge in solar energy research. Covalently linked dimers provide crucial models for understanding the role of chromophore arrangement and coupling in SF. Sensitizers can be integrated into these systems to expand the absorption bandwidth through which SF can be accessed. Here, we define the role of the sensitizer-chromophore geometry in a sensitized SF model system. To this end, two conjugates have been synthesized consisting of a pentacene dimer (SF motif) connected via a rigid alkynyl bridge to a subphthalocyanine (the sensitizer motif) in either an axial or a peripheral arrangement. Steady-state and time-resolved photophysical measurements are used to confirm that both conjugates operate as per design, displaying near unity energy transfer efficiencies and high triplet quantum yields from SF. Decisively, energy transfer between the subphthalocyanine and pentacene dimer occurs ca. 26 times faster in the peripheral conjugate, even though the two chromophores are ca. 3 Å farther apart than in the axial conjugate. Following a theoretical evaluation of the dipolar coupling, Vdip2, and the orientation factor, κ2, of both the axial (Vdip2 = 140 cm-2; κ2 = 0.08) and the peripheral (Vdip2 = 724 cm-2; κ2 = 1.46) arrangements, we establish that this rate acceleration is due to a more favorable (nearly co-planar) relative orientation of the transition dipole moments of the subphthalocyanine and pentacenes in the peripheral constellation.

6.
Acc Chem Res ; 55(24): 3616-3630, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36484500

RESUMO

The formation and study of molecules that model the sp-hybridized carbon allotrope, carbyne, is a challenging field of synthetic physical organic chemistry. The target molecules, oligo- and polyynes, are often the preferred candidates as models for carbyne because they can be formed with monodisperse lengths as well as defined structures. Despite a simple linear structure, the synthesis of polyynes is often far from straightforward, due in large part to a highly conjugated framework that can render both precursors and products highly reactive, i.e., kinetically unstable. The vast majority of polyynes are formed as symmetrical products from terminal alkynes as precursors via an oxidative, acetylenic homocoupling reaction based on the Glaser, Eglinton-Galbraith, and Hay reactions. These reactions are very efficient for the synthesis of shorter polyynes (e.g., hexaynes and octaynes), but yields often drop dramatically as a function of length for longer derivatives, usually starting with the formation of decaynes. The most effective approach to circumvent unstable precursors and products has been through the incorporation of sterically demanding end groups that serve to "protect" the polyyne skeleton. This approach was arguably identified in the early 1950s by Bohlmann and co-workers with the synthesis of tBu-end-capped polyynes. During the next 50 years, a polyyne with 14 contiguous alkyne units remained the longest isolated derivative until 2010, when the record was extended to 22 alkyne units. The record length was broken again in 2020, when a polyyne consisting of 24 alkynes was isolated and characterized. Beyond polyynes, there have been several reports describing the potential synthesis of carbyne, but conclusive characterization and proof of structure have been tenuous. The sole example of synthetic carbyne arises from synthesis within carbon nanotubes, when chains of thousands of sp carbon atoms have been linked to form polydisperse samples of carbyne. Thus, model compounds for carbyne, the polyynes, remain the best means to examine and predict the experimental structure and properties of this carbon allotrope.This Account will discuss the general synthesis of polyynes using homologous series of polyynes with up to 10 alkyne units as examples (decaynes). The limited number of specific syntheses of series with longer polyynes will then be presented and discussed in more detail based on end groups. The monodisperse polyynes produced from these synthetic efforts are then examined toward providing our best extrapolations for the expected characteristics for carbyne based on 13C NMR spectroscopy, UV-vis spectroscopy, X-ray crystallography, and Raman spectroscopy.


Assuntos
Nanotubos de Carbono , Poli-Inos , Humanos , Poli-Inos/química , Alcinos/química , Carbamatos
7.
Chemistry ; 28(38): e202200616, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35476301

RESUMO

Cyclic tetraaryl[5]cumulenes (1 a-f) have been synthesized and studied as a function of increasing ring strain. The magnitude of ring strain is approximated by the extent of bending of the cumulenic core as assessed by a combination of X-ray crystallographic analysis and DFT calculations. Trends are observed in 13 C NMR, UV-vis, and Raman spectra associated with ring strain, but the effects are small. In particular, the experimental HOMO-LUMO gap is not appreciably affected by bending of the [5]cumulene framework from ca. 174° (λmax =504 nm) in 1 a to ca. 178° (λmax =494 nm) in 1 f.


Assuntos
Teoria Quântica , Análise Espectral Raman , Modelos Moleculares , Polienos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Org Chem ; 87(24): 16236-16249, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36416781

RESUMO

We report a general method for the desymmetrization of 6,13-pentacenequinone to access ethynylated pentacene ketones, namely, 13-hydroxy-13-(ethynylated)pentacene-6(13H)-ones. These pentacene ketones ("pentacenones") serve as divergent intermediates to unsymmetrically 6,13-disubstituted pentacenes, commonly used for studying singlet fission processes and charge transport phenomena in organic field effect transistors. We report a synthetic method to access pentacenones, which utilizes a precipitation/crystallization from the crude mixture to enable facile purification on a multigram scale. X-ray crystallographic analysis of the pentacenones reveals key noncovalent interactions that contribute to the crystallization, specifically, hydrogen bonding between the ketone and alcohol functional groups as well as π-π-stacking and dipole-dipole interactions.

9.
Chem Soc Rev ; 50(16): 9202-9239, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34231589

RESUMO

Asphaltenes comprise the heaviest and least understood fraction of crude petroleum. The asphaltenes are a diverse and complex mixture of organic and organometallic molecules in which most of the molecular constituents are tightly aggregated into more complicated suprastructures. The bulk properties of asphaltenes arise from a broad range of polycyclic aromatics, heteroatoms, and polar functional groups. Despite much analytical effort, the precise molecular architectures of the material remain unresolved. To understand asphaltene characteristics and reactivity, the field has turned to synthetic model compounds that mirror asphaltene structure, aggregation behavior, and thermal chemistry, including the nucleation of coke. Historically, molecular asphaltene modeling was limited to commercial compounds, offering little illumination and few opportunities for hypothesis-driven research. More recently, however, rational molecular design and modern organic synthesis have started to impact this area. This review provides an overview of commercially available model compounds but is principally focused on the design and synthesis of structurally advanced and appropriately functionalized compounds to mimic the physical and chemical behavior of asphaltenes. Efforts to model asphaltene aggregation are briefly discussed, and a prognosis for the field is offered. A referenced tabulation of the synthetic compounds reported to date is provided.

10.
Langmuir ; 37(32): 9785-9792, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34351167

RESUMO

Petroleum asphaltenes are surface-active compounds found in crude oils, and their interactions with surfaces and interfaces have huge implications for many facets of reservoir exploitation, including production, transportation, and oil-water separation. The asphaltene fraction in oil, found in the highest boiling-point range, is composed of many different molecules that vary in size, functionality, and polarity. Studies done on asphaltene fractions have suggested that they interact via polyaromatic and heteroaromatic ring structures and functional groups containing nitrogen, sulfur, and oxygen. However, isolating a single pure chemical structure of asphaltene in abundance is challenging and often not possible, which impairs the molecular-level study of asphaltenes of various architectures on surfaces. Thus, to further the molecular fundamental understanding, we chose to use functionalized model asphaltenes (AcChol-Th, AcChol-Ph, and 1,6-DiEtPy[Bu-Carb]) and model self-assembled monolayer (SAM) surfaces with precisely known chemical structures, whereby the hydrophobicity of the model surface is controlled. We applied solutions of asphaltenes to these SAM surfaces and then analyzed them with surface-sensitive techniques of near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS). We observe no adsorption of asphaltenes to the hydrophobic surface. On the hydrophilic surface, AcChol-Ph penetrates into the SAM with a preferential orientation parallel to the surface; AcChol-Th adsorbs in a similar manner, and 1,6-DiEtPy[Bu-Carb] binds the surface with a bent binding geometry. Overall, this study demonstrates the need for studying pure and fractionated asphaltenes at the molecular level, as even within a family of asphaltene congeners, very different surface interactions can occur.

11.
Angew Chem Int Ed Engl ; 60(3): 1474-1481, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33002284

RESUMO

Due its complementary absorptions in the range of 450 and 600 nm, an energy-donating hexaaryl-subporphyrazine has been linked to a pentacene dimer, which acts primarily as an energy acceptor and secondarily as a singlet fission enabler. In the corresponding conjugate, efficient intramolecular Förster resonance energy transfer (i-FRET) is the modus operandi to transfer energy from the subporphyrazine to the pentacene dimer. Upon energy transfer, the pentacene dimer undergoes intramolecular singlet fission (i-SF), that is, converting the singlet excited state, via an intermediate state, into a pair of correlated triplet excited states. Solvatochromic fluorescence of the subporphyrazine is a key feature of this system and features a red-shift as large as 20 nm in polar media. Solvent is thus used to modulate spectral overlap between the fluorescence of subporphyrazine and absorption of the pentacene dimer, which controls the Förster rate constant, on one hand, and the triplet quantum yield, on the other hand. The optimum spectral overlap is realized in xylene, leading to Förster rate constant of 3.52×1011  s-1 and a triplet quantum yield of 171 % ±10 %. In short, the solvent polarity dependence, which is a unique feature of subporphyrazines, is decisive in terms of adjusting spectral overlap, ensuring a sizable Förster rate constant, and maximizing triplet quantum yields. Uniquely, this optimization can be achieved without a need for synthetic modification of the subporphyrazine donor.

12.
Acc Chem Res ; 52(8): 2056-2069, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31310504

RESUMO

Pentacene shows unique electronic properties that have long been appreciated and exploited. Over the past 20 years, new synthetic schemes have been developed to address some of the problems encountered with pristine pentacene (e.g., stability and solubility), and pentacene derivatives have become a mainstay in the realm of organic semiconductors in applications such as organic light-emitting diodes, organic field-effect transistors (OFETs), and organic photovoltaics. At the onset of our work, the vast majority of known pentacene derivatives featured a symmetrical structure, often as the result of synthetic protocols that rely on nucleophilic additions to 6,13-pentacenequinone (PQ). The assembly of pentacenes featuring an unsymmetrical framework held great appeal, but the stepwise formation of derivatives, in which a specific function might be incorporated through each individual addition step, did not exist. This Account presents contributions from our lab and others to the synthesis and study of unsymmetrical pentacene derivatives. PQ offers an ideal platform for desymmetrization through the sequential addition of nucleophiles to each of the two ketone groups. Addition can be completed in a one-pot protocol, or through individual steps in which the product of the first addition is isolated and used as a precursor in the divergent synthesis of a series of structurally related molecules. This general approach has been used to assemble pentacene derivatives appended with alkynyl/aryl/alkyl groups, polarized frameworks via substitution with donor and/or acceptor groups, and conjugated oligomers linked by butadiynyl moieties. Stepwise substitution also provides derivatives with remarkable functionality, including pentacene-porphyrin dyads, pendent TEMPO free radicals, cyanoacrylic acid anchor groups (for incorporation into dye-sensitized solar cells), and derivatives with ambipolar behavior for OFET devices. The study of intramolecular singlet fission (iSF) has emerged as one of the most fruitful applications of unsymmetrical pentacene derivatives. SF involves the spontaneous splitting of a photoexcited singlet state (S1) in one chromophore into a pair of triplets (T1) shared with a neighboring chromophore. Pentacene derivatives are particularly well suited for this since E(S1) ≥ 2E(T1) satisfies the thermodynamic requirements for SF, and they have the additional feature that two chromophores can be tethered together by a "spacer" that allows spectroscopic studies of iSF to be done in dilute solution. From a synthetic perspective, the major advantage of the dimeric structure is the ability to modify the spacer, which allows for control over the distance, geometric relationship, and electronic coupling between the two pentacene groups. Dimeric pentacenes are central to providing an in-depth understanding of the molecular mechanism of SF, often providing advances not possible from measurements in the solid state.

13.
Chemistry ; 26(70): 16712-16720, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32706454

RESUMO

The hierarchical synthesis of three porphyrin and four bisporphyrin derivatives is presented. This strategy relies on the incorporation of linkers based on azo moieties appended with pyridyl and/or acetylenic groups that facilitate axial coordination to Ga- and Ru-metalloporphyrins. These porphyrinic systems allow for a quantitative analysis of the effects of diamagnetic anisotropy (DA) by using 1 H NMR spectroscopic and X-ray crystallographic analyses. A simple power-law relationship between the proton chemical shift and the distance from the porphyrin core is experimentally outlined, which confirms previous theoretical predictions and shows that the limit of DA is about 2 nm. Photophysical properties of the azo-linked porphyrins are analyzed by UV/Vis spectroscopy, showing that significant cis-trans isomerization is not observed for azo ligands bound only to Ga-porphyrins. Incorporation of Ru-porphyrins to an azo ligand facilitates photoswitching behavior, but the process faces competition from decarbonylation of the Ru-porphyrin, and appreciable switching is only documented for GaL1Ru.

14.
Inorg Chem ; 59(17): 12054-12064, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32822178

RESUMO

Previous reports in the literature describe that the crystallization of hexaphenyl carbodiphosphorane (CDPPh) from a variety of solvents gives a "bent" geometry for the P-C-P moiety as the solid-state molecular structure. However, a linear structure is observed when CDPPh is crystallized from benzene. Here, we report detailed spectroscopic and theoretical studies on the linear and bent structures. X-ray powder diffraction examinations show a phase transition of linear CDPPh upon the loss of co-crystallized benzene molecules, which is accompanied by the bending of the P-C-P unit. Studies on the linear and bent structures (i.e., X-ray powder diffraction, solid-state NMR, UV-vis spectroscopy, and IR spectroscopy) show significant differences in their properties. Investigations of the solid-state structures with density functional theory-based methods (PBE-D3) point toward subtle dispersion effects being responsible for this solvent-induced bond-bending isomerism in CDPPh.

15.
J Am Chem Soc ; 141(15): 6191-6203, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30854854

RESUMO

We have designed and used four different spacers, denoted A-D, to connect two pentacenes and to probe the impact of intramolecular forces on the modulation of pentacene-pentacene interactions and, in turn, on the key steps in singlet fission (SF), that is, the 1(S1S0)-to-1(T1T1) as well as 1(T1T1)-to-5(T1T1) transitions by means of transient absorption and electron paramagnetic resonance measurements. In terms of the 1(S1S0)-to-1(T1T1) transition, a superexchange mechanism, that is, coupling to a higher-lying CT state to generate a virtual intermediate, enables rapid SF in A-D. Sizeable electronic coupling in A and B opens, on one hand, an additional pathway, that is, the population of a real intermediate, and changes, on the other hand, the mechanism to that of hopping. In turn, A and B feature much higher 1(T1T1) quantum yields than C and D, with a maximum value of 162% for A. In terms of the 1(T1T1)-to-5(T1T1) transition, the sizable electronic coupling in A and B is counterproductive, and C and D give rise to higher 5(T1T1)-to-(T1 + T1) quantum yields than A and B, with a maximum value of 85% for D.

16.
Angew Chem Int Ed Engl ; 58(2): 494-498, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30452109

RESUMO

Multidimensional, conjugated building blocks have been formed through the axial coordination of polyynes to the central Ga atom of tetraarylporphyrins. Electron deficient pentafluorophenyl substituents in the meso-positions provide more stable σ-acetylide complexes to Ga than analogous structures with tert-butylphenyl groups. Mono-, di-, and triynes have been used, including a pyridyl endcapped diyne that allows for formation of porphyrin triads through coordination of the pyridyl ligand to a Ru porphyrin.

17.
Angew Chem Int Ed Engl ; 58(43): 15263-15267, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31342607

RESUMO

A tetrameric pentacene, PT, has been used to explore the effects of exciton delocalization on singlet fission (SF). For the first time, triplet decorrelation through intramolecular triplet diffusion was observed following SF. Transient absorption spectroscopy was used to examine different decorrelation mechanisms (triplet diffusion versus structural changes) for PT and its dimeric equivalent PD on the basis of the rate and activation barrier of the decorrelation step. Charge-separation experiments using tetracyano-p-quinodimethane (TCNQ) to quench triplet excitons formed through SF demonstrate that enhanced intersystem crossing, that is, spin catalysis, is a widely underestimated obstacle to quantitative harvesting of the SF products. The importance of spatial separation of the decorrelated triplet states is emphasized, and independent proof that the decorrelated triplet pair state consists of two (T1 ) states per molecule is provided.

18.
Angew Chem Int Ed Engl ; 58(7): 2023-2028, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30560557

RESUMO

The chemical reduction of a [3]cumulene ([3]TrTol) has been explored using alkali metals. Mono- and doubly reduced forms of [3]TrTol were isolated as solvent-separated ion pairs with {Na(18-crown-6)THF2 }+ and {K(18-crown-6)THF2 }+ counterions and crystallographically characterized. This allowed analysis of structural parameters of the "naked" anions of [3]TrTol without interference from metal binding. The dianion of [3]TrTol was also isolated as a contact-ion complex with {Cs(18-crown-6)}+ cations, thereby adding the effect of metal coordination to the core. Structural comparisons of anions to the neutral molecule, [3]TrTol, outline monotonic increases in bond-length alternation (BLA) upon stepwise reduction. The greatest BLA value is found for the contact-ion complex, which shows an alternating sequence of short and long carbon-carbon bonds, consistent with the structure of an alkyne. In contrast to studies on tetraphenyl[3]cumulene, the cumulenic framework of [3]TrTol remains planar in all the derivatives.

19.
Acc Chem Res ; 50(6): 1468-1479, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28561581

RESUMO

In comparison to the omnipresent two- and three-dimensional allotropes of carbon, namely, graphite and diamond (as well as recent entries graphene, carbon nanotubes, and fullerenes), a detailed understanding of the one-dimensional carbon allotrope carbyne is not well established, and even the existence of carbyne has been a matter of controversy over the past decades. Composed of sp-hybridized carbon, carbyne could potentially exist in two forms, either as a polyyne (alternating single and triple bonds, expected to show a semiconducting behavior) or as a cumulene (all carbon atoms are connected via double bonds, predicted to show metallic behavior). Although a number of publications are available on the hypothetical structure and properties of carbyne, specific knowledge about its physical and spectroscopic characteristics is still unclear. In order to predict the properties of carbyne, the synthesis and study of model compounds, namely, polyynes and cumulenes, has been a promising avenue. The synthesis of polyynes has been extensively explored in the last decades, culminating with the isolation of a polyyne with 22 acetylene units, which allows extrapolation to the properties of carbyne. Extended cumulenes, on the other hand, have remained much less well-known, and specific studies of properties versus molecular length are quite limited. A limiting factor to the study of [n]cumulenes has been their dramatically increased reactivity, especially in comparison to polyynes of comparable length. For example, most known [7]cumulenes can only be handled in solution, while the polyynes of equivalent length (i.e., a triyne with three acetylene units) are quite stable. [9]Cumulenes are the longest derivatives studied to date. In this Account, we describe our efforts to design and synthesize odd [n]cumulenes (i.e., n = 3, 5, 7, 9) that are sufficiently persistent under ambient conditions to allow in depth characterization of physical and spectral properties. This goal has been achieved through modification of the end-capping groups by increasing the steric bulk and thereby shielding the reactive cumulene framework to provide stable [7]- and [9]cumulenes. An alternative route to stabilization is accomplished via encapsulation of the cumulene skeleton in a macrocycle, that is, formation of cumulene rotaxanes. The new sterically encumbered cumulenic products are reasonably stable under normal laboratory conditions, although some readily undergo cycloaddition reactions to give interesting products. We have explored preliminary trends for the reactivity of long [n]cumulenes. Finally, trends in the series of [n]cumulene model compounds are now discernible, including a thorough consideration of bond length alternation (BLA) in long [n]cumulenes using X-ray crystallographic analyses, as well as electronic properties via UV-vis spectroscopy and cyclic voltammetry.

20.
Chemistry ; 24(33): 8245-8257, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29323762

RESUMO

Singlet fission (SF) involves the spontaneous splitting of a photoexcited singlet state into a pair of triplets, and it holds great promise toward the realization of more efficient solar cells. Although the process of SF has been known since the 1960s, debate regarding the underlying mechanism continues to this day, especially for molecular materials. A number of different chromophores have been synthesized and studied in order to better understand the process of SF. These previous reports have established that pentacene and its derivatives are especially well-suited for the study of SF, since the energetic requirement E(S1 )≥2E(T1 ) is fulfilled rendering the process exothermic and unidirectional. Dimeric pentacene derivatives, in which individual pentacene chromophores are tethered by a "spacer", have emerged as the system of choice toward exploring the mechanism of intramolecular singlet fission (iSF). The dimeric structure, and in particular the spacer, allows for controlling and tuning the distance, geometric relationship, and electronic coupling between the two pentacene moieties. This Minireview describes recent advances using pentacene dimers for the investigation of iSF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA