Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cytometry A ; 97(6): 620-629, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31637838

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype of non-Hodgkin lymphoma and is notorious for its clinical heterogeneity. Patient outcomes can be predicted by cell-of-origin (COO) classification, demonstrating that the underlying transcriptional signature of malignant B-cells informs biological behavior in the context of standard combination chemotherapy regimens. In the current study, we used mass cytometry (CyTOF) to examine tumor phenotypes at the protein level with single cell resolution in a collection of 27 diagnostic DLBCL biopsy specimens from treatment naïve patients. We found that malignant B-cells from each patient occupied unique regions in 37-dimensional phenotypic space with no apparent clustering of samples into discrete subtypes. Interestingly, variable MHC class II expression was found to be the greatest contributor to phenotypic diversity. Within individual tumors, a subset of cases showed multiple phenotypic subpopulations, and in one case, we were able to demonstrate direct correspondence between protein-level phenotypic subsets and DNA mutation-defined subclones. In summary, CyTOF analysis can resolve both intertumoral and intratumoral heterogeneity among primary samples and reveals that each case of DLBCL is unique and may be comprised of multiple, genetically distinct subclones. © 2019 International Society for Advancement of Cytometry.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/genética , Mutação
2.
Nat Commun ; 10(1): 2913, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266935

RESUMO

Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts; however, these are hampered by variable genetic background, inability to study early events, and practical issues with availability/reproducibility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral transduction of normal human cord blood yields aggressive leukemia that appears indistinguishable from natural disease. We utilize this synthetic model to uncover a role for oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists in established tumors where it defines a novel subset of patients distinct from other known genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes are specifically activated in human T-ALL by an epigenetic mechanism and confer growth advantage in both pre-leukemia cells and established clones.


Assuntos
Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Família Multigênica , Animais , Proliferação de Células , Epigênese Genética , Feminino , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Leucemia/genética , Leucemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Modelos Genéticos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo
3.
Exp Hematol ; 64: 84-96, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29733873

RESUMO

RUNX1 is frequently mutated in T-cell acute lymphoblastic leukemia (T-ALL). The spectrum of RUNX1 mutations has led to the notion that it acts as a tumor suppressor in this context; however, other studies have placed RUNX1, along with transcription factors TAL1 and NOTCH1, as core drivers of an oncogenic transcriptional program. To reconcile these divergent roles, we knocked down RUNX1 in human T-ALL cell lines and deleted Runx1 or Cbfb in primary mouse T-cell leukemias. RUNX1 depletion consistently resulted in reduced cell proliferation and increased apoptosis. RUNX1 upregulated variable sets of target genes in each cell line, but consistently included a core set of oncogenic effectors including insulin-like growth factor 1 receptor (IGF1R) and NRAS. Our results support the conclusion that RUNX1 has a net positive effect on cell growth in the context of established T-ALL.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Neoplasias/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Animais , Divisão Celular , Linhagem Celular Tumoral , Tamanho Celular , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/deficiência , Subunidade beta de Fator de Ligação ao Core/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Leucemia Experimental/genética , Leucemia Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Transcrição Gênica , Transcriptoma , Carga Tumoral
4.
Cell Stem Cell ; 23(5): 714-726.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30269902

RESUMO

Acute leukemias are aggressive malignancies of developmentally arrested hematopoietic progenitors. We sought here to explore the possibility that changes in hematopoietic stem/progenitor cells during development might alter the biology of leukemias arising from this tissue compartment. Using a mouse model of acute T cell leukemia, we found that leukemias generated from fetal liver (FL) and adult bone marrow (BM) differed dramatically in their leukemia stem cell activity with FL leukemias showing markedly reduced serial transplantability as compared to BM leukemias. We present evidence that this difference is due to NOTCH1-driven autocrine IGF1 signaling, which is active in FL cells but restrained in BM cells by EZH2-dependent H3K27 trimethylation. Further, we confirmed this mechanism is operative in human disease and show that enforced IGF1 signaling effectively limits leukemia stem cell activity. These findings demonstrate that resurrecting dormant fetal programs in adult cells may represent an alternate therapeutic approach in human cancer.


Assuntos
Células da Medula Óssea/metabolismo , Epigênese Genética/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/genética , Animais , Células da Medula Óssea/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA