Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Hum Mol Genet ; 32(1): 1-14, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866299

RESUMO

One of the most significant risk variants for Parkinson's disease (PD), rs356182, is located at the PD-associated locus near the alpha-synuclein (α-syn) encoding gene, SNCA. SNCA-proximal variants, including rs356182, are thought to function in PD risk through enhancers via allele-specific regulatory effects on SNCA expression. However, this interpretation discounts the complex activity of genetic enhancers and possible non-conical functions of α-syn. Here we investigated a novel risk mechanism for rs356182. We use CRISPR-Cas9 in LUHMES cells, a model for dopaminergic midbrain neurons, to generate precise hemizygous lesions at rs356182. The PD-protective (A/-), PD-risk (G/-) and wild-type (A/G) clones were neuronally differentiated and then compared transcriptionally and morphologically. Among the affected genes was SNCA, whose expression was promoted by the PD-protective allele (A) and repressed in its absence. In addition to SNCA, hundreds of genes were differentially expressed and associated with neurogenesis and axonogenesis-an effect not typically ascribed to α-syn. We also found that the transcription factor FOXO3 specifically binds to the rs356182 A-allele in differentiated LUHMES cells. Finally, we compared the results from the rs356182-edited cells to our previously published knockouts of SNCA and found only minimal overlap between the sets of significant differentially expressed genes. Together, the data implicate a risk mechanism for rs356182 in which the risk-allele (G) is associated with abnormal neuron development, independent of SNCA expression. We speculate that these pathological effects manifest as a diminished population of dopaminergic neurons during development leading to the predisposition for PD later in life.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Diferenciação Celular/genética , Neurônios Dopaminérgicos/metabolismo , Expressão Gênica , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
2.
Mol Cell Neurosci ; 119: 103702, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093507

RESUMO

As researchers grapple with the mechanisms and implications of alpha-synuclein (α-syn) in neuropathology, it is often forgotten that the function(s) of α-syn in healthy cells remain largely elusive. Previous work has relied on observing α-syn localization in the cell or using knockout mouse models. Here, we address the specific role of α-syn in human dopaminergic neurons by disrupting its gene (SNCA) in the human dopaminergic neuron cell line, LUHMES. SNCA-null cells were able to differentiate grossly normally and showed modest effects on gene expression. The effects on gene expression were monodirectional, resulting primarily in the significant decrease of expression for 401 genes, implicating them as direct, or indirect positive targets of α-syn. Gene ontological analysis of these genes showed enrichment in terms associated with proliferation, differentiation, and synapse activity. These results add to the tapestry of α-syn biological functions. SIGNIFICANCE STATEMENT: The normal functions of α-syn have remained controversial, despite its clear importance in Parkinson's Disease pathology, where it accumulates in Lewy bodies and contributes to neurodegeneration. Its name implies synaptic and nuclear functions, but how it participates at these locations has not been resolved. Via knock-out experiments in dopaminergic neurons, we implicate α-syn as a functional participant in synapse activity and in proliferation/differentiation, the latter being novel and provide insight into α-syn's role in neuronal development.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , alfa-Sinucleína , Animais , Proliferação de Células , Neurônios Dopaminérgicos/metabolismo , Expressão Gênica , Humanos , Camundongos , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Inorg Chem ; 60(7): 4424-4433, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705141

RESUMO

A polycrystalline sample of Tl2Ir2O7 was synthesized by high-pressure and high-temperature methods. Tl2Ir2O7 crystallizes in the cubic pyrochlore structure with space group Fd3̅m (No. 227). The Ir4+ oxidation state is confirmed by Ir-L3 X-ray absorption near-edge spectroscopy. Combined temperature-dependent magnetic susceptibility, resistivity, specific heat, and DFT+DMFT calculation data show that Tl2Ir2O7 is a Pauli paramagnetic metal, but it is close to a metal-insulator transition. The effective ionic size of Tl3+ is much smaller than that of Pr3+ in metallic Pr2Ir2O7; hence, Tl2Ir2O7 would be expected to be insulating according to the established phase diagram of the pyrochlore iridate compounds, A3+2Ir4+2O7. Our experimental and theoretical studies indicate that Tl2Ir2O7 is uniquely different from the current A3+2Ir4+2O7 phase diagram. This uniqueness is attributed primarily to the electronic configuration difference between Tl3+ and rare-earth ions, which plays a substantial role in determining the Ir-O-Ir bond angle, and the corresponding electrical and magnetic properties.

4.
Angew Chem Int Ed Engl ; 59(21): 8240-8246, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32185857

RESUMO

Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure-induced disordering could require recognition of an order-disorder transition in solid-state physics/chemistry and geophysics. Double perovskites Y2 CoIrO6 and Y2 CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B-site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long-range ferrimagnetic ordering in the B-site ordered samples are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit-cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2 CoIrO6 and Y2 CoRuO6 .

5.
Inorg Chem ; 58(23): 15953-15961, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724852

RESUMO

The corundum-related oxides Mn2ScNbO6 and Mn2ScTaO6 were synthesized at high pressure and high temperature (6 GPa and 1475 K). Analysis of the synchrotron powder X-ray diffraction shows that Mn2ScNbO6 and Mn2ScTaO6 crystallize in Ni3TeO6-type noncentrosymmetric crystal structures with space group R3. The asymmetric crystal structure was confirmed by second harmonic generation measurement. X-ray absorption near-edge spectroscopies indicate formal valence states of Mn2+2Sc3+Nb5+O6 and Mn2+2Sc3+Ta5+O6, also supported by the calculated bond valence sums. Both samples are electrically insulating. Magnetic measurements indicate that Mn2ScNbO6 and Mn2ScTaO6 order ferrimagnetically at 53 and 50 K, respectively, and Mn2ScTaO6 is found to have a field-induced magnetic transition.

6.
Inorg Chem ; 58(1): 397-404, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30557015

RESUMO

Double-perovskite Lu2NiIrO6 was synthesized at high pressure (6 GPa) and high temperature (1300 °C). Synchrotron powder X-ray diffraction indicates that its structure is a monoclinic double perovskite (space group P21/ n) with a small, 11% Ni/Ir antisite disorder. X-ray absorption near-edge spectroscopy measurements established Ni2+ and Ir4+ formal oxidation states. Magnetic studies indicate a ferrimagnetic transition at 207 K. The low-temperature magnetization curve of Lu2NiIrO6 features broad hysteresis with a coercive field as high as 48 kOe. These results encourage the search for hard magnets in the class of 3d/5d double-perovskite oxides.

7.
Neurobiol Dis ; 114: 53-64, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29486295

RESUMO

In genome-wide association studies of complex diseases, many risk polymorphisms are found to lie in non-coding DNA and likely confer risk through allele-dependent differences in gene regulatory elements. However, because distal regulatory elements can alter gene expression at various distances on linear DNA, the identity of relevant genes is unknown for most risk loci. In Parkinson's disease, at least some genetic risk is likely intrinsic to a neuronal subpopulation of cells in the brain regions affected. In order to compare neuron-relevant methods of pairing risk polymorphisms to target genes as well as to further characterize a single-cell model of a neurodegenerative disease, we used the portionally-dopaminergic, neuronal, mesencephalic-derived cell line LUHMES to dissect differentiation-specific mechanisms of gene expression. We compared genome-wide gene expression in undifferentiated and differentiated cells with genome-wide histone H3K27ac and CTCF-bound regions. Whereas promoters and CTCF binding were largely consistent between differentiated and undifferentiated cells, enhancers were mostly unique. We matched the differentiation-specific appearance or disappearance of enhancers with changes in gene expression and identified 22,057 enhancers paired with 6388 differentially expressed genes by proximity. These enhancers are enriched with at least 13 transcription factor response elements, driving a cluster of genes involved in neurogenesis. We show that differentiated LUHMES cells, but not undifferentiated cells, show enrichment for PD-risk SNPs. Candidate genes for these loci are largely unrelated, though a subset is linked to synaptic vesicle cycling and transport, implying that PD-related disruption of these pathways is intrinsic to dopaminergic neurons.


Assuntos
Predisposição Genética para Doença/genética , Mesencéfalo/patologia , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Sequência de Aminoácidos/genética , Linhagem Celular , Humanos
8.
J Neurochem ; 139 Suppl 1: 275-289, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26617280

RESUMO

Parkinson's disease is a progressive neurological disorder that is characterized by the formation of intracellular protein inclusion bodies composed primarily of a misfolded and aggregated form of the protein α-synuclein. There is growing evidence that supports the prion-like hypothesis of α-synuclein progression. This hypothesis postulates that α-synuclein is a prion-like pathological agent and is responsible for the progression of Parkinson pathology in the brain. Potential misfolding or aggregation of α-synuclein that might occur in the peripheral nervous system as a result of some insult, environmental or genetic (or more likely a combination of both) that might spread into the midbrain, eventually causing degeneration of the neurons in the substantia nigra. As the disease progresses further, it is likely that α-synuclein pathology continues to spread throughout the brain, including the cortex, leading to deterioration of cognition and higher brain functions. While it is unknown why α-synuclein initially misfolds and aggregates, a great deal has been learned about how the cell handles aberrant α-synuclein assemblies. In this review, we focus on these mechanisms and discuss them in an attempt to define the role that they might play in the propagation of misfolded α-synuclein from cell-to-cell. The prion-like hypothesis of α-synuclein pathology suggests a method for the transmission of misfolded α-synuclein from one neuron to another. This hypothesis postulates that misfolded α-synuclein becomes aggregation prone and when released and taken up by neighboring cells, seeds further misfolding and aggregation. In this review we examine the cellular mechanisms that are involved in the processing of α-synuclein and how these may contribute to the prion-like propagation of α-synuclein pathology. This article is part of a special issue on Parkinson disease.


Assuntos
Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Priônicas/biossíntese , Proteínas Priônicas/metabolismo , alfa-Sinucleína/biossíntese , alfa-Sinucleína/metabolismo , Animais , Humanos , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Agregados Proteicos/fisiologia , Transporte Proteico/fisiologia
9.
Inorg Chem ; 54(23): 11226-35, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26544911

RESUMO

We report a comprehensive study of the crystal structure of (Ga(1-x)Znx)(N(1-x)Ox) solid solution nanoparticles by means of neutron and synchrotron X-ray scattering. In our study, we used four different types of (Ga(1-x)Znx)(N(1-x)Ox) nanoparticles, with diameters of 10-27 nm and x = 0.075-0.51, which show energy band gaps from 2.21 to 2.61 eV. Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is hexagonal wurtzite (space group P63mc) for the larger nanoparticles, while the crystal structure of smaller nanoparticles is disordered hexagonal. Pair-distribution-function analysis found that the intermediate crystal structure retains a "motif" of the average one; however, the local structure is more disordered. The implications of disorder on the reduced energy band gap are discussed.

10.
Adv Sci (Weinh) ; : e2402048, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961641

RESUMO

Ferro-rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo-FR crystals (i.e., single FR domain). This study explores a cost-effective approach to growing homo-FR helimagnetic RbFe(SO4)2 (RFSO) crystals by lowering the crystal growth temperature below the TFR threshold using the high-pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo-FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally high TFR of ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates.

11.
Inorg Chem ; 52(16): 9692-7, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23906417

RESUMO

The rare-earth manganites RMnO3 (R = rare earth) are a class of important multiferroics with stable hexagonal structures for small R ion radius (Sc, Lu, Yb, ...). Metastable perovskite phases of these systems possess intriguing electronically driven electrical polarization, but the synthesis of the perovskite phase for the end member ScMnO3 system has proven to be elusive. We report the structure of a new monoclinic P2(1)/n perovskite phase of ScMnO3 synthesized from the hexagonal phase under high-pressure and high-temperature conditions. This extends the small ion region for so-called E-phase electronically driven ferroelectric manganese perovsites.

12.
Nano Lett ; 12(7): 3483-90, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22681539

RESUMO

While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, mixed-valent manganese oxide film that exhibits anomalously high specific capacitance (∼2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials ∼0.16 mg/cm(2)) while maintaining excellent power density and cycling life. The dramatic performance enhancement is attributed to its unique mixed-valence state with porous nanoarchitecture, which may facilitate rapid mass transport and enhance surface double-layer capacitance, while promoting facile redox reactions associated with charge storage by both Mn and O sites, as suggested by in situ X-ray absorption spectroscopy (XAS) and density functional theory calculations. The new charge storage mechanisms (in addition to redox reactions of cations) may offer critical insights to rational design of a new-generation energy storage devices.

13.
J Am Chem Soc ; 133(51): 20692-5, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22141466

RESUMO

Many researchers have focused in recent years on resolving the crucial problem of capacity fading in Li ion batteries when carbon anodes are replaced by other group-IV elements (Si, Ge, Sn) with much higher capacities. Some progress was achieved by using different nanostructures (mainly carbon coatings), with which the cycle numbers reached 100-200. However, obtaining longer stability via a simple process remains challenging. Here we demonstrate that a nanostructure of amorphous hierarchical porous GeO(x) whose primary particles are ~3.7 nm diameter has a very stable capacity of ~1250 mA h g(-1) for 600 cycles. Furthermore, we show that a full cell coupled with a Li(NiCoMn)(1/3)O(2) cathode exhibits high performance.

14.
J Am Chem Soc ; 133(29): 11213-9, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21678973

RESUMO

We synthesized monodisperse nanospheres of an intermetallic FeSn(5) phase via a nanocrystal-conversion protocol using preformed Sn nanospheres as templates. This tetragonal phase in P4/mcc space group, along with the defect structure Fe(0.74)Sn(5) of our nanospheres, has been resolved by synchrotron X-ray diffraction and Rietveld refinement. Importantly, FeSn(5), which is not yet established in the Fe-Sn phase diagram, exhibits a quasi-one dimensional crystal structure along the c-axis, thus leading to interesting anisotropic thermal expansion and magnetic properties. Magnetization measurements indicate that nanospheres are superparamagnetic above the blocking temperature T(B) = 300 K, which is associated with the higher magnetocrystalline anisotropy constant K = 3.33 kJ m(-3). The combination of the magnetization measurements and first-principles density functional theory calculations reveals the canted antiferromagnetic nature with significant spin fluctuation in lattice a-b plane. The low Fe concentration also leads Fe(0.74)Sn(5) to enhanced capacity as an anode in Li ion batteries.

15.
Adv Sci (Weinh) ; 8(18): e2003046, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250750

RESUMO

Perovskite photovoltaic ABX3 systems are being studied due to their high energy-conversion efficiencies with current emphasis placed on pure inorganic systems. In this work, synchrotron single-crystal diffraction measurements combined with second harmonic generation measurements reveal the absence of inversion symmetry below room temperature in CsPbBr3 . Local structural analysis by pair distribution function and X-ray absorption fine structure methods are performed to ascertain the local ordering, atomic pair correlations, and phase evolution in a broad range of temperatures. The currently accepted space group assignments for CsPbBr3 are found to be incorrect in a manner that profoundly impacts physical properties. New assignments are obtained for the bulk structure: I m 3 ¯ (above ≈410 K), P21 /m (between ≈300 K and ≈410 K), and the polar group Pm (below ≈300 K), respectively. The newly observed structural distortions exist in the bulk structure consistent with the expectation of previous photoluminescence and Raman measurements. High-pressure measurements reveal multiple low-pressure phases, one of which exists as a metastable phase at ambient pressure. This work should help guide research in the perovskite photovoltaic community to better control the structure under operational conditions and further improve transport and optical properties.

16.
J Parkinsons Dis ; 11(2): 585-603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579871

RESUMO

BACKGROUND: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease.ObjectiveTo study the role of the adaptive immune system with respect to α-syn pathology. METHODS: We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. RESULTS: Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. CONCLUSION: Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Humanos , Camundongos , Substância Negra/metabolismo , Linfócitos T/metabolismo , alfa-Sinucleína/metabolismo
17.
BMC Mol Biol ; 11: 6, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20085654

RESUMO

BACKGROUND: Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. RESULTS: To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. CONCLUSIONS: This study has identified and characterised the expression profiles of members of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Nematoides/genética , Interferência de RNA , Animais , Bases de Dados Genéticas , Dessecação , Etiquetas de Sequências Expressas , Inativação Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Nematoides/metabolismo , Transcrição Gênica
18.
Phys Rev Lett ; 104(24): 245502, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20867310

RESUMO

A study of the structural stability of boron nanoribbons is presented. Antiaromatic instabilities are found to destabilize boron nanoribbons. Our studies suggest that nanoribbons obtained from "α sheets" are more stable than those from reconstructed {1221} sheets and traditional triangular boron sheets. The stability of the nanoribbons increases with an increasing ribbon width resulting in an increased hole density (η) and, hence, an increased number of hexagonal motifs in the nanoribbon. The boron nanoribbons formed are mostly metallic; however, semiconducting structures have also been observed.

19.
Phys Rev Lett ; 104(20): 206403, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20867044

RESUMO

The Ni1+/Ni2+ states of nickelates have the identical (3d(9)/3d(8)) electronic configuration as Cu2+/Cu3+ in the high temperature superconducting cuprates, and are expected to show interesting properties. An intriguing question is whether mimicking the electronic and structural features of cuprates would also result in superconductivity in nickelates. Here we report experimental evidence for a bulklike magnetic transition in La4Ni3O8 at 105 K. Density functional theory calculations relate the transition to a spin density wave nesting instability of the Fermi surface.

20.
NPJ Parkinsons Dis ; 6: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964108

RESUMO

Genetic risk for complex diseases very rarely reflects only Mendelian-inherited phenotypes where single-gene mutations can be followed in families by linkage analysis. More commonly, a large set of low-penetrance, small effect-size variants combine to confer risk; they are normally revealed in genome-wide association studies (GWAS), which compare large population groups. Whereas Mendelian inheritance points toward disease mechanisms arising from the mutated genes, in the case of GWAS signals, the effector proteins and even general risk mechanism are mostly unknown. Instead, the utility of GWAS currently lies primarily in predictive and diagnostic information. Although an amazing body of GWAS-based knowledge now exists, we advocate for more funding towards the exploration of the fundamental biology in post-GWAS studies; this research will bring us closer to causality and risk gene identification. Using Parkinson's Disease as an example, we ask, how, where, and when do risk loci contribute to disease?

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA