Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Inorg Chem ; 60(7): 4424-4433, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705141

RESUMO

A polycrystalline sample of Tl2Ir2O7 was synthesized by high-pressure and high-temperature methods. Tl2Ir2O7 crystallizes in the cubic pyrochlore structure with space group Fd3̅m (No. 227). The Ir4+ oxidation state is confirmed by Ir-L3 X-ray absorption near-edge spectroscopy. Combined temperature-dependent magnetic susceptibility, resistivity, specific heat, and DFT+DMFT calculation data show that Tl2Ir2O7 is a Pauli paramagnetic metal, but it is close to a metal-insulator transition. The effective ionic size of Tl3+ is much smaller than that of Pr3+ in metallic Pr2Ir2O7; hence, Tl2Ir2O7 would be expected to be insulating according to the established phase diagram of the pyrochlore iridate compounds, A3+2Ir4+2O7. Our experimental and theoretical studies indicate that Tl2Ir2O7 is uniquely different from the current A3+2Ir4+2O7 phase diagram. This uniqueness is attributed primarily to the electronic configuration difference between Tl3+ and rare-earth ions, which plays a substantial role in determining the Ir-O-Ir bond angle, and the corresponding electrical and magnetic properties.

2.
Angew Chem Int Ed Engl ; 59(21): 8240-8246, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32185857

RESUMO

Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure-induced disordering could require recognition of an order-disorder transition in solid-state physics/chemistry and geophysics. Double perovskites Y2 CoIrO6 and Y2 CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B-site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long-range ferrimagnetic ordering in the B-site ordered samples are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit-cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2 CoIrO6 and Y2 CoRuO6 .

3.
Inorg Chem ; 58(23): 15953-15961, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724852

RESUMO

The corundum-related oxides Mn2ScNbO6 and Mn2ScTaO6 were synthesized at high pressure and high temperature (6 GPa and 1475 K). Analysis of the synchrotron powder X-ray diffraction shows that Mn2ScNbO6 and Mn2ScTaO6 crystallize in Ni3TeO6-type noncentrosymmetric crystal structures with space group R3. The asymmetric crystal structure was confirmed by second harmonic generation measurement. X-ray absorption near-edge spectroscopies indicate formal valence states of Mn2+2Sc3+Nb5+O6 and Mn2+2Sc3+Ta5+O6, also supported by the calculated bond valence sums. Both samples are electrically insulating. Magnetic measurements indicate that Mn2ScNbO6 and Mn2ScTaO6 order ferrimagnetically at 53 and 50 K, respectively, and Mn2ScTaO6 is found to have a field-induced magnetic transition.

4.
Inorg Chem ; 58(1): 397-404, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30557015

RESUMO

Double-perovskite Lu2NiIrO6 was synthesized at high pressure (6 GPa) and high temperature (1300 °C). Synchrotron powder X-ray diffraction indicates that its structure is a monoclinic double perovskite (space group P21/ n) with a small, 11% Ni/Ir antisite disorder. X-ray absorption near-edge spectroscopy measurements established Ni2+ and Ir4+ formal oxidation states. Magnetic studies indicate a ferrimagnetic transition at 207 K. The low-temperature magnetization curve of Lu2NiIrO6 features broad hysteresis with a coercive field as high as 48 kOe. These results encourage the search for hard magnets in the class of 3d/5d double-perovskite oxides.

5.
Inorg Chem ; 54(23): 11226-35, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26544911

RESUMO

We report a comprehensive study of the crystal structure of (Ga(1-x)Znx)(N(1-x)Ox) solid solution nanoparticles by means of neutron and synchrotron X-ray scattering. In our study, we used four different types of (Ga(1-x)Znx)(N(1-x)Ox) nanoparticles, with diameters of 10-27 nm and x = 0.075-0.51, which show energy band gaps from 2.21 to 2.61 eV. Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is hexagonal wurtzite (space group P63mc) for the larger nanoparticles, while the crystal structure of smaller nanoparticles is disordered hexagonal. Pair-distribution-function analysis found that the intermediate crystal structure retains a "motif" of the average one; however, the local structure is more disordered. The implications of disorder on the reduced energy band gap are discussed.

6.
Inorg Chem ; 52(16): 9692-7, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23906417

RESUMO

The rare-earth manganites RMnO3 (R = rare earth) are a class of important multiferroics with stable hexagonal structures for small R ion radius (Sc, Lu, Yb, ...). Metastable perovskite phases of these systems possess intriguing electronically driven electrical polarization, but the synthesis of the perovskite phase for the end member ScMnO3 system has proven to be elusive. We report the structure of a new monoclinic P2(1)/n perovskite phase of ScMnO3 synthesized from the hexagonal phase under high-pressure and high-temperature conditions. This extends the small ion region for so-called E-phase electronically driven ferroelectric manganese perovsites.

7.
Nano Lett ; 12(7): 3483-90, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22681539

RESUMO

While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, mixed-valent manganese oxide film that exhibits anomalously high specific capacitance (∼2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials ∼0.16 mg/cm(2)) while maintaining excellent power density and cycling life. The dramatic performance enhancement is attributed to its unique mixed-valence state with porous nanoarchitecture, which may facilitate rapid mass transport and enhance surface double-layer capacitance, while promoting facile redox reactions associated with charge storage by both Mn and O sites, as suggested by in situ X-ray absorption spectroscopy (XAS) and density functional theory calculations. The new charge storage mechanisms (in addition to redox reactions of cations) may offer critical insights to rational design of a new-generation energy storage devices.

8.
J Am Chem Soc ; 133(51): 20692-5, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22141466

RESUMO

Many researchers have focused in recent years on resolving the crucial problem of capacity fading in Li ion batteries when carbon anodes are replaced by other group-IV elements (Si, Ge, Sn) with much higher capacities. Some progress was achieved by using different nanostructures (mainly carbon coatings), with which the cycle numbers reached 100-200. However, obtaining longer stability via a simple process remains challenging. Here we demonstrate that a nanostructure of amorphous hierarchical porous GeO(x) whose primary particles are ~3.7 nm diameter has a very stable capacity of ~1250 mA h g(-1) for 600 cycles. Furthermore, we show that a full cell coupled with a Li(NiCoMn)(1/3)O(2) cathode exhibits high performance.

9.
J Am Chem Soc ; 133(29): 11213-9, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21678973

RESUMO

We synthesized monodisperse nanospheres of an intermetallic FeSn(5) phase via a nanocrystal-conversion protocol using preformed Sn nanospheres as templates. This tetragonal phase in P4/mcc space group, along with the defect structure Fe(0.74)Sn(5) of our nanospheres, has been resolved by synchrotron X-ray diffraction and Rietveld refinement. Importantly, FeSn(5), which is not yet established in the Fe-Sn phase diagram, exhibits a quasi-one dimensional crystal structure along the c-axis, thus leading to interesting anisotropic thermal expansion and magnetic properties. Magnetization measurements indicate that nanospheres are superparamagnetic above the blocking temperature T(B) = 300 K, which is associated with the higher magnetocrystalline anisotropy constant K = 3.33 kJ m(-3). The combination of the magnetization measurements and first-principles density functional theory calculations reveals the canted antiferromagnetic nature with significant spin fluctuation in lattice a-b plane. The low Fe concentration also leads Fe(0.74)Sn(5) to enhanced capacity as an anode in Li ion batteries.

10.
Adv Sci (Weinh) ; 8(18): e2003046, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250750

RESUMO

Perovskite photovoltaic ABX3 systems are being studied due to their high energy-conversion efficiencies with current emphasis placed on pure inorganic systems. In this work, synchrotron single-crystal diffraction measurements combined with second harmonic generation measurements reveal the absence of inversion symmetry below room temperature in CsPbBr3 . Local structural analysis by pair distribution function and X-ray absorption fine structure methods are performed to ascertain the local ordering, atomic pair correlations, and phase evolution in a broad range of temperatures. The currently accepted space group assignments for CsPbBr3 are found to be incorrect in a manner that profoundly impacts physical properties. New assignments are obtained for the bulk structure: I m 3 ¯ (above ≈410 K), P21 /m (between ≈300 K and ≈410 K), and the polar group Pm (below ≈300 K), respectively. The newly observed structural distortions exist in the bulk structure consistent with the expectation of previous photoluminescence and Raman measurements. High-pressure measurements reveal multiple low-pressure phases, one of which exists as a metastable phase at ambient pressure. This work should help guide research in the perovskite photovoltaic community to better control the structure under operational conditions and further improve transport and optical properties.

11.
Phys Rev Lett ; 104(24): 245502, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20867310

RESUMO

A study of the structural stability of boron nanoribbons is presented. Antiaromatic instabilities are found to destabilize boron nanoribbons. Our studies suggest that nanoribbons obtained from "α sheets" are more stable than those from reconstructed {1221} sheets and traditional triangular boron sheets. The stability of the nanoribbons increases with an increasing ribbon width resulting in an increased hole density (η) and, hence, an increased number of hexagonal motifs in the nanoribbon. The boron nanoribbons formed are mostly metallic; however, semiconducting structures have also been observed.

12.
Phys Rev Lett ; 104(20): 206403, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20867044

RESUMO

The Ni1+/Ni2+ states of nickelates have the identical (3d(9)/3d(8)) electronic configuration as Cu2+/Cu3+ in the high temperature superconducting cuprates, and are expected to show interesting properties. An intriguing question is whether mimicking the electronic and structural features of cuprates would also result in superconductivity in nickelates. Here we report experimental evidence for a bulklike magnetic transition in La4Ni3O8 at 105 K. Density functional theory calculations relate the transition to a spin density wave nesting instability of the Fermi surface.

13.
Nanoscale Adv ; 1(2): 664-670, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132233

RESUMO

It is generally accepted that chemically synthesized nanoparticles lose their ferroelectricity (spontaneous polarization) as the particles become smaller. In contrast, ball-milled ferroelectric nanoparticles have an enhanced ferroelectric response at remarkably small sizes (≤10 nm). Although prior theory suggests that surface stress influences ferroelectricity, the source of such a stress and how it physically influences ferroelectricity in zero-dimensional nanoparticles has remained a mystery. In this paper, we demonstrate that the top-down approach of wet ball-milling not only results in fragmented materials on the nanoscale, but it also is responsible for a mechanochemical synthesis of metal carboxylates forming at the nanoparticles' surface. We prove that the presence of such a compound with a particular type of binding mode chemisorbed at the nanoparticles' surface is responsible for producing surface stress. This surface stress results in a stabilization and dramatic enhancement of the spontaneous polarization, which is 5 times greater than that of the bulk material and 650 times greater than what is measured in materials fabricated using standard chemical synthesis techniques. The results of this study have further led to the development of a new process that produces ferroelectric nanoparticles (≤10 nm) with uniform shape and size using a combination of wet chemistry and mechanochemical synthesis.

14.
Chem Commun (Camb) ; 56(2): 265-268, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31807742

RESUMO

The novel two-dimensional honeycomb layered Cu3LiRu2O6 exhibits Pauli-like paramagnetic and Mott variable range hopping semiconduction behaviors, which contradict the large specific-heat Sommerfeld coefficient for metals, and indicate a possible spin-excitation induced nonmetallic metal. This nonmetallic feature can be significantly suppressed by pressure toward producing a bad-metal state, as reflected by the temperature-dependent resistivity response up to 35 GPa.

15.
J Colloid Interface Sci ; 314(1): 10-7, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17561066

RESUMO

Ni(II) sorption onto iron oxides and in particular hydrous ferric oxide (HFO) is among the important processes impacting its distribution, mobility, and bioavailability in environment. To develop mechanistic models for Ni, extended X-ray absorption fine structure (EXAFS) analysis has been conducted on Ni(II) sorbed to HFO. Coprecipitation revealed the formation of the metastable alpha-Ni(OH)(2) at a Ni(II) loading of 3.5 x 10(-3) molg(-1). On the other hand, Ni(II) formed inner-sphere mononuclear bidentate complexes along edges of FeO(6) octahedra when sorbed to HFO surfaces with Ni-O distances of 2.05-2.07 A and Ni-Fe distances of 3.07-3.11 A. This surface complex was observed by EXAFS study over 2.8 x 10(-3) to 10(-1) ionic strength, pH from 6 to 7, a Ni(II) loading of 8 x 10(-4) to 8.1 x 10(-3) molg(-1) HFO, and reaction times from 4 hours to 8 months. The short- and long-range structure analyses suggest that the presence of Ni(II) inhibited transformation of the amorphous iron oxide into a more crystalline form. However, Ni(2+) was not observed to substitute for Fe(3+) in the oxide structure. This study systematically addresses Ni(II) adsorption mechanisms to amorphous iron oxide. The experimentally defined surface complexes can be used to constrain surface complexation modeling for improved prediction of metal distribution at the iron oxide/aqueous interface.


Assuntos
Compostos Férricos/química , Níquel/química , Análise Espectral/métodos , Absorção , Difração de Raios X , Raios X
16.
J Colloid Interface Sci ; 303(1): 87-98, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16920131

RESUMO

Amorphous hydrous manganese oxide (HMO) is an important mineral in soils and sediments influencing the mobility and bioavailability of metal contaminants. In this study, nickel and lead sorption to discrete HMO and HMO-coated montmorillonite was investigated mechanistically. The effect of pH and concentration revealed that when normalized to the mass of oxide present, the HMO-coated montmorillonite behaved similarly to the discrete Mn oxide, where both ions sorbed onto HMO-coated montmorillonite as inner-sphere complexes. Ni coordinated to the vacancy sites in the Mn oxide structure, while Pb formed bidentate corner-sharing complexes. These coordination environments were observed not only as a function of loading, pH, and ionic strength, but also in long-term studies where sorption increased by as much as 100% (from 6x10(-4) to 1.2x10(-3) mol Ni/g HMO-coated montmorillonite). In this slower sorption process, intraparticle diffusion, the internal surface sites along microporous walls appear to be no different than external ones. Best fit diffusivities ranged from 10(-12) to 10(-13) cm2/s for Ni and 10(-17) to 10(-20) cm2/s for Pb. The significant difference in the diffusivities for the two ions is consistent with site activation theory, where theoretical surface diffusivities were predicted and given their error were in agreement with experimental results. Mn oxides sequester heavy metals in the environment.


Assuntos
Bentonita/química , Chumbo/química , Compostos de Manganês/química , Modelos Químicos , Níquel/química , Óxidos/química , Adsorção , Concentração de Íons de Hidrogênio , Concentração Osmolar
17.
J Colloid Interface Sci ; 298(2): 615-23, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16466736

RESUMO

Zinc sorption to hydrous manganese oxide (HMO)-coated clay was investigated macroscopically, kinetically, and spectroscopically. Adsorption edges and isotherms revealed that the affinity and capacity of the HMO-coated montmorillonite was greater than that of montmorillonite, and when normalized to the oxide present, the coatings behaved similarly to the discrete Mn oxide. Over two pH conditions, 5 and 6, a linear relationship was observed for the isotherms; further analysis with X-ray absorption spectroscopy (XAS) resulted in one type of sorption configuration as a function of loading and ionic strength at pH 5. However, at a surface loading of 10(-3) mol(Zn) g(HMO-coatedclay)(-1) when the pH increased from 5 to 7, the first shell distance decreased slightly, while the atoms and coordination numbers remained the same; this change may be attributed to an increase in electrostatic interactions. After a contact time of 4 months where an additional 60% of the sites become occupied, the slower sorption process was modeled as intraparticle surface diffusion. Best fit diffusivities ranged from 10(-18) to 10(-17) cm2/s, where a slower process was observed for the coated surface as compared to the discrete oxide. Interestingly, the porosity of the Mn oxide coating appears to be influenced by the substrate during its growth, as its increase and shift to a smaller pore size distribution resulted in a diffusivity between that observed for discrete HMO and montmorillonite.

18.
J Phys Chem B ; 109(20): 10406-18, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16852261

RESUMO

The local atomic structure of the Mn in NiMn/NiFe exchange coupled films was investigated using Mn K-edge extended X-ray absorption fine structure (EXAFS) measurements to elucidate the possible correlation between the coercivity that can occur even in samples that display no signs of NiMn L1(0) ordering in diffraction patterns and such ordering on a length scale below the diffraction limit. Raising the substrate growth temperature from 3 to 200 degrees C increases the extent of L1(0) ordering in the NiMn pinning layer and the associated coercivity. A short-range order parameter (S(SRO)) was derived from EXAFS data for comparison with the long-range order parameter (S(LRO)) obtained from the X-ray diffraction measurements. Analogous to S(LRO), S(SRO) increases in tandem with the pinning layer coercivity, implying the presence of nanometer-scale ordered clusters at the beginning stages of macroscopic L1(0) phase formation that apparently foster antiferromagnetism despite their small size. The behavior of the EXAFS, especially the contributions of the more distant shells, also suggests that the overall structure in materials that are not fully L1(0)-ordered is more accurately described as locally ordered, magnetically ordered, incoherent nanodomains of the L1(0) phase separated by locally disordered, strained, interdomain regions that globally average to the fcc lattice with little or no local fcc structure present. The constraints on the sizes and other characteristics of these domains were explored by examining the diffraction patterns calculated for several two-dimensional analogue structures. These demonstrated that one of the most important structural features in the development of a two-phase diffraction pattern was the presence of dislocations in response to the elastic strain at the interfaces between domains where the accumulated expitaxial mismatch was greater than half of the bond length that rendered the domains incoherent with respect to each other.

19.
J Colloid Interface Sci ; 281(1): 39-48, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15567378

RESUMO

Hydrous amorphous Al (HAO), Fe (HFO), and Mn (HMO) oxides are ubiquitous in the subsurface as both discrete particles and coatings and exhibit a high affinity for heavy metal contaminants. To assess risks associated with heavy metals, such as Pb, to the surrounding environment and manage remedial activities requires accurate mechanistic models with well-defined transport parameters that represent sorption processes. Experiments were conducted to evaluate Pb sorption to microporous Al, Fe, and Mn oxides, as well as to montmorillonite and HAO-coated montmorillonite. Intraparticle diffusion, a natural attenuating process, was observed to be the rate-limiting mechanism in the sorption process, where best-fit surface diffusivities ranged from 10(-18) to 10(-15) cm(2) s(-1). Specifically, diffusivities of Pb sorption to discrete aluminum oxide, aluminum oxide-coated montmorillonite, and montmorillonite indicated substrate surface characteristics influence metal mobility where diffusivity increased as affinity decreased. Furthermore, the diffusivity for aluminum oxide-coated montmorillonite was consistent with the concentrations of the individual minerals present and their associated particle size distributions. These results suggest that diffusivities for other coated systems can be predicted, and that oxide coatings and montmorillonite are effective sinks for heavy metal ions.

20.
Chemosphere ; 60(1): 111-25, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15910910

RESUMO

A probabilistic approach was applied in an ecological risk assessment (ERA) to characterize risk and address uncertainty employing Monte Carlo simulations for assessing parameter and risk probabilistic distributions. This simulation tool (ERA) includes a Window's based interface, an interactive and modifiable database management system (DBMS) that addresses a food web at trophic levels, and a comprehensive evaluation of exposure pathways. To illustrate this model, ecological risks from depleted uranium (DU) exposure at the US Army Yuma Proving Ground (YPG) and Aberdeen Proving Ground (APG) were assessed and characterized. Probabilistic distributions showed that at YPG, a reduction in plant root weight is considered likely to occur (98% likelihood) from exposure to DU; for most terrestrial animals, likelihood for adverse reproduction effects ranges from 0.1% to 44%. However, for the lesser long-nosed bat, the effects are expected to occur (>99% likelihood) through the reduction in size and weight of offspring. Based on available DU data for the firing range at APG, DU uptake will not likely affect survival of aquatic plants and animals (<0.1% likelihood). Based on field and laboratory studies conducted at APG and YPG on pocket mice, kangaroo rat, white-throated woodrat, deer, and milfoil, body burden concentrations observed fall into the distributions simulated at both sites.


Assuntos
Poluição Ambiental/efeitos adversos , Poluição Ambiental/estatística & dados numéricos , Modelos Estatísticos , Urânio/toxicidade , Animais , Simulação por Computador , Cadeia Alimentar , Método de Monte Carlo , Nível de Efeito Adverso não Observado , Plantas , Medição de Risco , Incerteza , Estados Unidos , United States Environmental Protection Agency , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA