Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 148(24): 241729, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960334

RESUMO

Applications of inorganic scintillators-activated with lanthanide dopants, such as Ce and Eu-are found in diverse fields. As a strict requirement to exhibit scintillation, the 4f ground state (with the electronic configuration of [Xe]4fn 5d0) and 5d1 lowest excited state (with the electronic configuration of [Xe]4fn-1 5d1) levels induced by the activator must lie within the host bandgap. Here we introduce a new machine learning (ML) based search strategy for high-throughput chemical space explorations to discover and design novel inorganic scintillators. Building upon well-known physics-based chemical trends for the host dependent electron binding energies within the 4f and 5d1 energy levels of lanthanide ions and available experimental data, the developed ML model-coupled with knowledge of the vacuum referred valence and conduction band edges computed from first principles-can rapidly and reliably estimate the relative positions of the activator's energy levels relative to the valence and conduction band edges of any given host chemistry. Using perovskite oxides and elpasolite halides as examples, the presented approach has been demonstrated to be able to (i) capture systematic chemical trends across host chemistries and (ii) effectively screen promising compounds in a high-throughput manner. While a number of other application-specific performance requirements need to be considered for a viable scintillator, the scheme developed here can be a practically useful tool to systematically down-select the most promising candidate materials in a first line of screening for a subsequent in-depth investigation.

2.
Phys Rev Lett ; 108(19): 195504, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003057

RESUMO

Ion irradiation experiments and atomistic simulations were used to demonstrate that irradiation-induced lattice swelling in a complex oxide, Lu2Ti2O7, is due initially to the formation of cation antisite defects. X-ray diffraction revealed that cation antisite formation correlates directly with lattice swelling and indicates that the volume per antisite pair is approximately 12 Å3. First principles calculations revealed that lattice swelling is best explained by cation antisite defects. Temperature accelerated dynamics simulations indicate that cation Frenkel defects are metastable and decay to form antisite defects.

3.
J Chem Phys ; 136(23): 234702, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22779610

RESUMO

Using ab initio molecular dynamics simulations and nudged elastic band calculations we examine the finite temperature stability, transition pathways, and migration mechanisms of large oxygen clusters in UO(2+x). Here we specifically consider the recently proposed split quad-interstitial and cuboctahedral oxygen clusters. It is shown that isolated cuboctahedral clusters may transform into more stable configurations that are closely linked to the split quad-interstitial. The split quad-interstitial is stable with respect to single interstitials occupying the empty octahedral holes of the UO(2) lattice. In order to better understand discrepancies between theory and experiments, the simulated atomic pair distribution functions for the split quad-interstitial structures are analyzed with respect to the distribution function for U(4)O(9) previously obtained from neutron diffraction data. Our nudged elastic band calculations suggest that the split quad-interstitial may migrate by translating one of its constituent di-interstitial clusters via a barrier that is lower than the corresponding barrier for individual interstitials, but higher than the barrier for the most stable di-interstitial cluster.

4.
Front Chem ; 9: 712543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532309

RESUMO

Their very flexible chemistry gives oxide materials a richness in functionality and wide technological application. A specific group of oxides that have a structure related to fluorite but with less oxygen, termed anion-deficient fluorite structural derivatives and with pyrochlores being the most notable example, has been shown to exhibit a diversity of useful properties. For example, the possibility to undergo a transition from an ordered to disordered state allows these oxides to have high radiation tolerance. Atomistic-scale calculations in the form of molecular dynamics (MD) and density functional theory (DFT) have been extensively used to understand what drives this order/disorder transition. Here we give a brief overview of how atomistic-scale calculations are utilized in modeling disorder in pyrochlores and other anion-deficient fluorite structural derivatives. We discuss the modeling process from simple point defects to completely disordered structures, the dynamics during the disordering process, and the use of mathematical models to generate ordered solid-solution configurations. We also attempt to identify the challenges in modeling short range order and discuss future directions to more comprehensive models of the disordered structures.

5.
Sci Adv ; 6(31): eaba8437, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832684

RESUMO

The nondestructive investigation of single vacancies and vacancy clusters in ion-irradiated samples requires a depth-resolved probe with atomic sensitivity to defects. The recent development of short-pulsed positron beams provides such a probe. Here, we combine depth-resolved Doppler broadening and positron annihilation lifetime spectroscopies to identify vacancy clusters in ion-irradiated Fe and measure their density as a function of depth. Despite large concentrations of dislocations and voids in the pristine samples, positron annihilation measurements uncovered the structure of vacancy clusters and the change in their size and density with irradiation dose. When combined with transmission electron microscopy measurements, the study demonstrates an association between the increase in the density of small vacancy clusters with irradiation and a remarkable reduction in the size of large voids. This, previously unknown, mechanism for the interaction of cascade damage with voids in ion-irradiated materials is a consequence of the high porosity of the initial microstructure.

6.
J Phys Condens Matter ; 21(11): 115403, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21693918

RESUMO

Collision cascade simulations were performed in the Er(2)O(3) sesquioxide. The resulting point defects observed at the end of the ballistic phase of the collision cascade were analysed and their evaluation over longer time examined using temperature accelerated dynamics and the kinetic Monte Carlo method. The result shows that the large mass difference between the Er and O atoms results in cascades with different structures where an initially energetic O atom can channel over long distances, depositing energy in smaller sub-regions, whereas denser cascades with vacancy-rich cores develop from Er primary knock-on atoms. The most mobile defect that can form is the isolated O vacancy but when this occurs as part of a larger defect cluster it becomes trapped. The energy barriers for all other defects to move are very high.

7.
J Phys Condens Matter ; 31(25): 255002, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30865943

RESUMO

We report on density functional theory calculations that have been performed to systematically investigate the hydrogen-surface interaction as a function of surface orientation. The interactions that were analyzed include stable atomic adsorption sites, molecular hydrogen dissociation and absorption energies, migration pathways and barriers on tungsten surfaces, and the saturation coverage limits on the (1 1 1) surface. Stable hydrogen adsorption sites were found for all surfaces. For the reconstructed W(1 0 0), there are two primary adsorption sites: namely, the long-bridge and short-bridge sites. The threefold hollow site (3F) was found to be the most stable for W(1 1 0), while the bond-centered site between the first and second layer was found to be most stable for the W(1 1 1) surface. No bound adsorption sites for H2 molecules were found for the W surfaces. Hydrogen (H) migration on both the (1 0 0) and (1 1 0) surfaces is found to have preferred pathways for 1D motion, whereas the smallest migration barrier for net migration of H on the W(1 1 1) surface leads to 2D migration. Although weaker H interactions are predicted for the W(1 1 1) surface compared to the (1 0 0) or (1 1 0) surfaces, we observe higher H surface concentrations of Θ = 4.0 at zero K, possibly due to the corrugated surface structure. These results provide insight into H adsorption, surface saturation coverage and migration mechanisms necessary to describe the evolution from the dilute limit to concentrated coverages of H.

8.
Sci Rep ; 7: 40148, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091522

RESUMO

Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.

9.
Sci Rep ; 6: 19375, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26783247

RESUMO

The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.

10.
Nat Commun ; 5: 4551, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25080878

RESUMO

The thermal conductivity of uranium dioxide has been studied for over half a century, as uranium dioxide is the fuel used in a majority of operating nuclear reactors and thermal conductivity controls the conversion of heat produced by fission events to electricity. Because uranium dioxide is a cubic compound and thermal conductivity is a second-rank tensor, it has always been assumed to be isotropic. We report thermal conductivity measurements on oriented uranium dioxide single crystals that show anisotropy from 4 K to above 300 K. Our results indicate that phonon-spin scattering is important for understanding the general thermal conductivity behaviour, and also explains the anisotropy by coupling to the applied temperature gradient and breaking cubic symmetry.

11.
J Phys Condens Matter ; 25(6): 065502, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23307696

RESUMO

Density functional theory was used to study the effects of charge localization on the structure and mobility of the highly mobile hexa-interstitial cluster in MgO. It was found that the relative stability of the configurations changed as charge was localized, with the higher energy intermediate configuration of the neutral cluster becoming the lowest energy configuration for the doubly charged cluster. The singly charged cluster was found to have the lowest migration barrier, with a barrier of 0.18 eV. The high mobility of the singly charged hexa-interstitial cluster could have a significant effect on microstructure evolution following radiation damage, while the detailed properties will be sensitive to the level of doping in the material.


Assuntos
Óxido de Magnésio/química , Modelos Químicos , Termodinâmica
12.
J Phys Condens Matter ; 25(6): 065504, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23315221

RESUMO

Using (90)Sr as a representative isotope, we present a framework for understanding beta decay within the solid state. We quantify three key physical and chemical principles, namely momentum-induced recoil during the decay event, defect creation due to physical displacement, and chemical evolution over time. A fourth effect, that of electronic excitation, is also discussed, but this is difficult to quantify and is strongly material dependent. The analysis is presented for the specific cases of SrTiO(3) and SrH(2). By comparing the recoil energy with available threshold displacement data we show that in many beta-decay situations defects such as Frenkel pairs will not be created during decay as the energy transfer is too low. This observation leads to the concept of chemical evolution over time, which we quantify using density functional theory. Using a combination of Bader analysis, phonon calculations and cohesive energy calculations, we show that beta decay leads to counter-intuitive behavior that has implications for nuclear waste storage and novel materials design.


Assuntos
Evolução Química , Hidrogênio/química , Modelos Químicos , Óxidos/química , Estrôncio/química , Titânio/química , Partículas beta , Transferência de Energia , Teoria Quântica
13.
J Phys Condens Matter ; 21(43): 435602, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21832440

RESUMO

The stabilities of selected fission products-Xe, Cs, and Sr-are investigated as a function of non-stoichiometry x in UO(2 ± x). In particular, density functional theory (DFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO(2), the DFT calculations are performed using spin polarization and with the Hubbard U term. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. Cs(2)O is observed as a second stable phase and SrO is found to be soluble in the UO(2) matrix for all stoichiometries. These observations mirror experimentally observed phenomena.

14.
Phys Rev Lett ; 99(13): 135501, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17930607

RESUMO

Defect accumulation is the principal factor leading to the swelling and embrittlement of materials during irradiation. It is commonly assumed that, once defect clusters nucleate, their structure remains essentially constant while they grow in size. Here, we describe a new mechanism, discovered during accelerated molecular dynamics simulations of vacancy clusters in fcc metals, that involves the direct transformation of a vacancy void to a stacking fault tetrahedron (SFT) through a series of 3D structures. This mechanism is in contrast with the collapse to a 2D Frank loop which then transforms to an SFT. The kinetics of this mechanism are characterized by an extremely large rate prefactor, tens of orders of magnitude larger than is typical of atomic processes in fcc metals.

15.
Phys Rev Lett ; 92(11): 115505, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15089149

RESUMO

We study radiation-damage events in MgO on experimental time scales by augmenting molecular dynamics cascade simulations with temperature accelerated dynamics, molecular statics, and density functional theory. At 400 eV, vacancies and mono- and di-interstitials form, but often annihilate within milliseconds. At 2 and 5 keV, larger clusters can form and persist. While vacancies are immobile, interstitials aggregate into clusters (In) with surprising properties; e.g., an I4 is immobile, but an impinging I2 can create a metastable I6 that diffuses on the nanosecond time scale but is stable for years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA