Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 17(6)2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27314343

RESUMO

R-α-lipoic acid (R-LA) is a cofactor of mitochondrial enzymes and a very strong antioxidant. R-LA is available as a functional food ingredient but is unstable against heat or acid. Stabilized R-LA was prepared through complexation with γ-cyclodextrin (CD), yielding R-LA/CD. R-LA/CD was orally administered to six healthy volunteers and showed higher plasma levels with an area under the plasma concentration-time curve that was 2.5 times higher than that after oral administration of non-complexed R-LA, although the time to reach the maximum plasma concentration and half-life did not differ. Furthermore, the plasma glucose level after a single oral administration of R-LA/CD or R-LA was not affected and no side effects were observed. These results indicate that R-LA/CD could be easily absorbed in the intestine. In conclusion, γ-CD complexation is a promising technology for delivering functional but unstable ingredients like R-LA.


Assuntos
Ácido Tióctico/administração & dosagem , Ácido Tióctico/farmacocinética , gama-Ciclodextrinas/administração & dosagem , gama-Ciclodextrinas/farmacocinética , Adulto , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Disponibilidade Biológica , Combinação de Medicamentos , Voluntários Saudáveis , Humanos , Masculino , Ácido Tióctico/efeitos adversos , Ácido Tióctico/química , gama-Ciclodextrinas/efeitos adversos , gama-Ciclodextrinas/química
2.
Int J Mol Sci ; 14(2): 3639-55, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23434662

RESUMO

R(+)-alpha lipoic acid (RALA) is one of the cofactors for mitochondrial enzymes and, therefore, plays a central role in energy metabolism. RALA is unstable when exposed to low pH or heat, and therefore, it is difficult to use enantiopure RALA as a pharma- and nutra-ceutical. In this study, we have aimed to stabilize RALA through complex formation with cyclodextrins (CDs). α-CD, ß-CD and γ-CD were used for the formation of these RALA-CD complexes. We confirmed the complex formation using differential scanning calorimetry and showed by using HPLC analysis that complexed RALA is more stable than free RALA when subjected to humidity and high temperature or acidic pH conditions. Scanning electron microscopy studies showed that the particle size and shape differed depending on the cyclodextrin used for complexation. Further, the complexes of CD and RALA showed a different particle size distribution pattern compared with that of CD itself or that of the physical mixture of RALA and CD.

3.
Nutrients ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986122

RESUMO

In the context of the growing prevalence of type 2 diabetes (T2DM), control of postprandial hyperglycemia is crucial for its prevention. Blood glucose levels are determined by various factors including carbohydrate hydrolyzing enzymes, the incretin system and glucose transporters. Furthermore, inflammatory markers are recognized predictors of diabetes outcome. Although there is some evidence that isoflavones may exhibit anti-diabetic properties, little is known about to what extent their corresponding hydroxylated metabolites may affect glucose metabolism. We evaluated the ability of a soy extract before (pre-) and after (post-) fermentation to counteract hyperglycemia in vitro and in Drosophila melanogaster in vivo. Fermentation with Aspergillus sp. JCM22299 led to an enrichment of hydroxy-isoflavones (HI), including 8-hydroxygenistein, 8-hydroxyglycitein and 8-hydroxydaidzein, accompanied by an enhanced free radical scavenging activity. This HI-rich extract demonstrated inhibitory activity towards α-glucosidase and a reduction of dipeptidyl peptidase-4 enzyme activity. Both the pre- and post-fermented extracts significantly inhibited the glucose transport via sodium-dependent glucose transporter 1. Furthermore, the soy extracts reduced c-reactive protein mRNA and secreted protein levels in interleukin-stimulated Hep B3 cells. Finally, supplementation of a high-starch D. melanogaster diet with post-fermented HI-rich extract decreased the triacylglyceride content of female fruit flies, confirming its anti-diabetic properties in an in vivo model.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Isoflavonas , Animais , Feminino , Drosophila melanogaster/metabolismo , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/prevenção & controle , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Extratos Vegetais/farmacologia , Glucose
4.
Biosci Biotechnol Biochem ; 74(7): 1452-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20622447

RESUMO

To determine the bioavailability of tocotrienol complex with gamma-cyclodextrin, the effects of tocotrienol/gamma-cyclodextrin complex on tocotrienol concentration in rat plasma and tissues were studied. Rats were administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. At 3 h after administration, the plasma gamma-tocotrienol concentration of the rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the rats administered tocotrienol and gamma-cyclodextrin. In order to determine the effect of complexation on tocotrienol absorption, rats were injected with Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoprotein by lipoprotein lipase, and then administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. The plasma gamma-tocotrienol concentration of the Triton-treated rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the other Triton-treated rats. These results suggest that complexation of tocotrienol with gamma-cyclodextrin elevates plasma and tissue tocotrienol concentrations by enhancing intestinal absorption.


Assuntos
Absorção Intestinal/efeitos dos fármacos , Tocotrienóis/metabolismo , Tocotrienóis/farmacocinética , gama-Ciclodextrinas/farmacologia , Animais , Disponibilidade Biológica , Peso Corporal/efeitos dos fármacos , Interações Medicamentosas , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Tocotrienóis/administração & dosagem , Tocotrienóis/sangue , Triglicerídeos/sangue , Triglicerídeos/metabolismo , gama-Ciclodextrinas/administração & dosagem , gama-Ciclodextrinas/farmacocinética
5.
J Phys Chem B ; 118(39): 11480-6, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25187379

RESUMO

Micelles can be formed from coenzyme Q10 (CoQ10) and dipotassium glycyrrhizate (GZK2) by using an inclusion complex of CoQ10 with γ-cyclodextrin (γ-CD). The mechanism of micelle formation was kinetically investigated. Adding GZK2 to a supersaturated solution of the CoQ10/γ-CD inclusion complex led to a linear increase in the solubility of CoQ10 due to the formation of micelles of CoQ10 when the molar ratio of GZK2/γ-CD increased to ∼1.6, after which the concentration remained constant. The equilibrium constant K for micelle formation was 0.68 (-) and the ratio of GZK2 to CoQ10 was 1. These results suggest that the formation of CoQ10 micelles with GZK2 might proceed via the displacement of CoQ10 by GZK2 in the γ-CD cavity followed by the formation of CoQ10 micelles.


Assuntos
Ácido Glicirrízico/química , Micelas , Ubiquinona/análogos & derivados , gama-Ciclodextrinas/química , Varredura Diferencial de Calorimetria , Cinética , Microscopia de Força Atômica , Solubilidade , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA