Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(4): e106523, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34935159

RESUMO

Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Retículo Endoplasmático/metabolismo , Miosina Tipo V/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Calmodulina/metabolismo , Retículo Endoplasmático Liso/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Espectrometria de Massas , Camundongos Knockout , Miosina Tipo V/genética , Domínios e Motivos de Interação entre Proteínas , Ratos Wistar
2.
J Virol ; 98(3): e0157623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323814

RESUMO

Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon's hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE: Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study's cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon's hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5's mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.


Assuntos
Adenovírus Humanos , Proteínas do Capsídeo , Lactoferrina , Receptores Virais , Internalização do Vírus , Humanos , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/química , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Adenovírus Humanos/ultraestrutura , Sítios de Ligação/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Lactoferrina/química , Lactoferrina/genética , Lactoferrina/metabolismo , Lactoferrina/ultraestrutura , Modelos Biológicos , Mutação , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Receptores Virais/ultraestrutura , Solubilidade , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia
3.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35393611

RESUMO

At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (ß2m, encoded by B2M), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single-molecule co-tracking. We identify non-covalent MHC-I FHC dimers, with dimerization mediated by the α3 domain, as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single-molecule colocalization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to that seen for ß2m.


Assuntos
Antígenos de Histocompatibilidade Classe I , Microglobulina beta-2 , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Microglobulina beta-2/metabolismo
4.
Phys Chem Chem Phys ; 26(17): 13094-13105, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38628116

RESUMO

Collision induced unfolding (CIU) is a method used with ion mobility mass spectrometry to examine protein structures and their stability. Such experiments yield information about higher order protein structures, yet are unable to provide details about the underlying processes. That information can however be provided using molecular dynamics simulations. Here, we investigate the gas-phase unfolding of norovirus capsid dimers from the Norwalk and Kawasaki strains by employing molecular dynamics simulations over a range of temperatures, representing different levels of activation, together with CIU experiments. The dimers have highly similar structures, but their CIU reveals different stability that can be explained by the different dynamics that arises in response to the activation seen in the simulations, including a part of the sequence with previously observed strain-specific dynamics in solution. Our findings show how similar protein variants can be examined using mass spectrometric techniques in conjunction with atomistic molecular dynamics simulations to reveal differences in stability as well as differences in how and where unfolding takes place upon activation.


Assuntos
Proteínas do Capsídeo , Simulação de Dinâmica Molecular , Norovirus , Desdobramento de Proteína , Norovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Estabilidade Proteica , Capsídeo/química , Multimerização Proteica
5.
J Am Chem Soc ; 145(51): 27958-27974, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38104324

RESUMO

Lassa virus is a negative-strand RNA virus with only four structural proteins that causes periodic outbreaks in West Africa. The nucleoprotein (NP) encapsidates the viral genome, forming ribonucleoprotein complexes (RNPs) together with the viral RNA and the L protein. RNPs must be continuously restructured during viral genome replication and transcription. The Z protein is important for membrane recruitment of RNPs, viral particle assembly, and budding and has also been shown to interact with the L protein. However, the interaction of NP, viral RNA, and Z is poorly understood. Here, we characterize the interactions between Lassa virus NP, Z, and RNA using structural mass spectrometry. We identify the presence of RNA as the driver for the disassembly of ring-like NP trimers, a storage form, into monomers to subsequently form higher order RNA-bound NP assemblies. We locate the interaction site of Z and NP and demonstrate that while NP binds Z independently of the presence of RNA, this interaction is pH-dependent. These data improve our understanding of RNP assembly, recruitment, and release in Lassa virus.


Assuntos
Vírus Lassa , Ribonucleoproteínas , Vírus Lassa/genética , Vírus Lassa/metabolismo , Ribonucleoproteínas/química , Nucleoproteínas , Montagem de Vírus , RNA Viral/genética , RNA Viral/metabolismo
6.
Anal Bioanal Chem ; 415(18): 4209-4220, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014373

RESUMO

MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown. We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-resolution diffractive imaging data (q < 0.3 nm-1) can be collected with only a few X-ray pulses. Such low-resolution data are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if MS SPIDOC is used as sample delivery.


Assuntos
Capsídeo , Elétrons , Simulação por Computador , Síncrotrons , Raios X
7.
J Am Chem Soc ; 144(29): 13060-13065, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35830336

RESUMO

We have used chemical shift perturbation (CSP) and saturation transfer difference (STD) NMR experiments to identify and characterize the binding of selected ligands to the receptor-binding domain (RBD) of the spike glycoprotein (S-protein) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We also subjected full-length S-protein to STD NMR experiments, allowing correlations with RBD-based results. CSPs reveal the binding sites for heparin and fondaparinux, and affinities were measured using CSP titrations. We then show that α-2,3-sialyllactose binds to the S-protein but not to the RBD. Finally, combined CSP and STD NMR experiments show that lifitegrast, a compound used for the treatment of dry eye, binds to the linoleic acid (LA) binding pocket with a dissociation constant in the µM range. This is an interesting finding, as lifitegrast lends itself well as a blueprint for medicinal chemistry, eventually furnishing novel entry inhibitors targeting the highly conserved LA binding site.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
8.
Biochem Soc Trans ; 50(1): 347-359, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34940787

RESUMO

Infection with human noroviruses requires attachment to histo blood group antigens (HBGAs) via the major capsid protein VP1 as a primary step. Several crystal structures of VP1 protruding domain dimers, so called P-dimers, complexed with different HBGAs have been solved to atomic resolution. Corresponding binding affinities have been determined for HBGAs and other glycans exploiting different biophysical techniques, with mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy being most widely used. However, reported binding affinities are inconsistent. At the extreme, for the same system MS detects binding whereas NMR spectroscopy does not, suggesting a fundamental source of error. In this short essay, we will explain the reason for the observed differences and compile reliable and reproducible binding affinities. We will then highlight how a combination of MS techniques and NMR experiments affords unique insights into the process of HBGA binding by norovirus capsid proteins.


Assuntos
Antígenos de Grupos Sanguíneos , Norovirus , Sítios de Ligação , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Humanos , Norovirus/química , Norovirus/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica
9.
Drug Discov Today Technol ; 39: 89-99, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906329

RESUMO

During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.


Assuntos
Elétrons , Lasers , Espectrometria de Massas , Difração de Raios X , Raios X
10.
Biochem J ; 477(5): 1009-1019, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32083638

RESUMO

Severe acute respiratory syndrome coronavirus is the causative agent of a respiratory disease with a high case fatality rate. During the formation of the coronaviral replication/transcription complex, essential steps include processing of the conserved polyprotein nsp7-10 region by the main protease Mpro and subsequent complex formation of the released nsp's. Here, we analyzed processing of the coronavirus nsp7-10 region using native mass spectrometry showing consumption of substrate, rise and fall of intermediate products and complexation. Importantly, there is a clear order of cleavage efficiencies, which is influenced by the polyprotein tertiary structure. Furthermore, the predominant product is an nsp7+8(2 : 2) hetero-tetramer with nsp8 scaffold. In conclusion, native MS, opposed to other methods, can expose the processing dynamics of viral polyproteins and the landscape of protein interactions in one set of experiments. Thereby, new insights into protein interactions, essential for generation of viral progeny, were provided, with relevance for development of antivirals.


Assuntos
Proteínas de Ligação a RNA/genética , Alinhamento de Sequência/métodos , Proteínas não Estruturais Virais/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteases 3C de Coronavírus , Infecções por Coronavirus/genética , RNA-Polimerase RNA-Dependente de Coronavírus , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Transferência Ressonante de Energia de Fluorescência , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/química , Proteínas não Estruturais Virais/química , Proteínas Virais Reguladoras e Acessórias/química , Replicação Viral/fisiologia
11.
Molecules ; 26(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917179

RESUMO

Noroviruses are the major cause of viral gastroenteritis and re-emerge worldwide every year, with GII.4 currently being the most frequent human genotype. The norovirus capsid protein VP1 is essential for host immune response. The P domain mediates cell attachment via histo blood-group antigens (HBGAs) in a strain-dependent manner but how these glycan-interactions actually relate to cell entry remains unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) is used to investigate glycan-induced protein dynamics in P dimers of different strains, which exhibit high structural similarity but different prevalence in humans. While the almost identical strains GII.4 Saga and GII.4 MI001 share glycan-induced dynamics, the dynamics differ in the emerging GII.17 Kawasaki 308 and rare GII.10 Vietnam 026 strain. The structural aspects of glycan binding to fully deamidated GII.4 P dimers have been investigated before. However, considering the high specificity and half-life of N373D under physiological conditions, large fractions of partially deamidated virions with potentially altered dynamics in their P domains are likely to occur. Therefore, we also examined glycan binding to partially deamidated GII.4 Saga and GII.4 MI001 P dimers. Such mixed species exhibit increased exposure to solvent in the P dimer upon glycan binding as opposed to pure wildtype. Furthermore, deamidated P dimers display increased flexibility and a monomeric subpopulation. Our results indicate that glycan binding induces strain-dependent structural dynamics, which are further altered by N373 deamidation, and hence hint at a complex role of deamidation in modulating glycan-mediated cell attachment in GII.4 strains.


Assuntos
Proteínas do Capsídeo/química , Simulação de Dinâmica Molecular , Polissacarídeos/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Aminoácidos , Sítios de Ligação , Humanos , Norovirus , Ligação Proteica , Conformação Proteica
12.
Int J Mass Spectrom ; 447: 116240, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33244295

RESUMO

As a fundament in many biologically relevant processes, endocytosis in its different guises has been arousing interest for decades and still does so. This is true for the actual transport and its initiation alike. In clathrin-mediated endocytosis, a comparatively well understood endocytic pathway, a set of adaptor proteins bind specific lipids in the plasma membrane, subsequently assemble and thus form a crucial bridge from clathrin to actin for the ongoing process. These adaptor proteins are highly interesting themselves and the subject of this manuscript. Using many of the instruments that are available now in the mass spectrometry toolbox, we added some facets to the picture of how these minimal assemblies may look, how they form, and what influences the structure. Especially, lipids in the adaptor protein complexes result in reduced charging of a normal sized complex due to their specific binding position. The results further support our structural model of a double ring structure with interfacial lipids.

13.
J Biol Chem ; 293(51): 19686-19698, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30348898

RESUMO

Viruses rely on many host cell processes, including the cellular transcription machinery. Segmented negative-strand RNA viruses (sNSV) in particular cannot synthesize the 5'-cap structure for their mRNA but cleave off cellular caps and use the resulting oligonucleotides as primers for their transcription. This cap-snatching mechanism, involving a viral cap-binding site and RNA endonuclease, is both virus-specific and essential for viral proliferation and therefore represents an attractive drug target. Here, we present biochemical and structural results on the putative cap-snatching endonuclease of Crimean-Congo hemorrhagic fever virus (CCHFV), a highly pathogenic bunyavirus belonging to the Nairoviridae family, and of two additional nairoviruses, Erve virus (EREV) and Nairobi sheep disease virus (NSDV). Our findings are presented in the context of other cap-snatching endonucleases, such as the enzymatically active endonuclease from Rift Valley fever virus (RVFV), from Arenaviridae and Bunyavirales, belonging to the His- and His+ endonucleases, respectively, according to the absence or presence of a metal ion-coordinating histidine in the active site. Mutational and metal-binding experiments revealed the presence of only acidic metal-coordinating residues in the active site of the CCHFV domain and a unique active-site conformation that was intermediate between those of His+ and His- endonucleases. On the basis of small-angle X-ray scattering (SAXS) and homology modeling results, we propose a protein topology for the CCHFV domain that, despite its larger size, has a structure overall similar to those of related endonucleases. These results suggest structural and functional conservation of the cap-snatching mechanism among sNSVs.


Assuntos
Endonucleases/química , Endonucleases/metabolismo , Capuzes de RNA/metabolismo , Vírus de RNA/enzimologia , Vírus de RNA/genética , RNA Viral/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Modelos Moleculares
14.
J Synchrotron Radiat ; 26(Pt 3): 653-659, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074428

RESUMO

The SPB/SFX instrument at the European XFEL provides unique conditions for single-particle imaging (SPI) experiments due to its high brilliance, nano-focus and unique pulse structure. Promising initial results provided by the international LCLS (Linac Coherent Light Source) SPI initiative highlight the potential of SPI. Current available injection methods generally have high sample consumption and do not provide any options for pulsing, selection or orientation of particles, which poses a problem for data evaluation. Aerosol-injector-based sample delivery is the current method of choice for SPI experiments, although, to a lesser extent, electrospray and electrospinning are used. Single particles scatter only a limited number of photons providing a single orientation for data evaluation, hence large datasets are required from particles in multiple orientations in order to reconstruct a structure. Here, a feasibility study demonstrates that nano-electrospray ionization, usually employed in biomolecular mass spectrometry, provides enough ion flux for SPI experiments. A novel instrument setup at the SPB/SFX instrument is proposed, which has the benefit of extremely low background while delivering mass over charge and conformation-selected ions for SPI.

15.
Anal Bioanal Chem ; 411(23): 5951-5962, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31280479

RESUMO

(Bio-)nanoparticle analysis employing a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (native nES GEMMA) also known as nES differential mobility analyzer (nES DMA) is based on surface-dry analyte separation at ambient pressure. Based on electrophoretic principles, single-charged nanoparticles are separated according to their electrophoretic mobility diameter (EMD) corresponding to the particle size for spherical analytes. Subsequently, it is possible to correlate the (bio-)nanoparticle EMDs to their molecular weight (MW) yielding a corresponding fitted curve for an investigated analyte class. Based on such a correlation, (bio-)nanoparticle MW determination via its EMD within one analyte class is possible. Turning our attention to icosahedral, non-enveloped virus-like particles (VLPs), proteinaceous shells, we set up an EMD/MW correlation. We employed native electrospray ionization mass spectrometry (native ESI MS) to obtain MW values of investigated analytes, where possible, after extensive purification. We experienced difficulties in native ESI MS with time-of-flight (ToF) detection to determine MW due to sample inherent characteristics, which was not the case for charge detection (CDMS). nES GEMMA exceeds CDMS in speed of analysis and is likewise less dependent on sample purity and homogeneity. Hence, gas-phase electrophoresis yields calculated MW values in good approximation even when charge resolution was not obtained in native ESI ToF MS. Therefore, both methods-native nES GEMMA-based MW determination via an analyte class inherent EMD/MW correlation and native ESI MS-in the end relate (bio-)nanoparticle MW values. However, they differ significantly in, e.g., ease of instrument operation, sample and analyte handling, or costs of instrumentation. Graphical abstract.


Assuntos
Eletroforese/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Vacinas de Partículas Semelhantes a Vírus/química , Vírus/química , Peso Molecular , Tamanho da Partícula , Proteínas/química , Vírion/química
16.
Biomacromolecules ; 19(9): 3714-3724, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30071731

RESUMO

Norovirus infection is the major cause of nonbacterial gastroenteritis in humans and has been the subject of numerous studies investigating the virus's biophysical properties and biochemical function with the aim of deriving novel and highly potent entry inhibitors to prevent infection. Recently, it has been shown that the protruding P domain dimer (P-dimer) of a GII.10 Norovirus strain exhibits two new binding sites for l-fucose in addition to the canonical binding sites. Thus, these sites provide a novel target for the design of multivalent fucose ligands as entry inhibitors of norovirus infections. In this current study, a first generation of multivalent fucose-functionalized glycomacromolecules was synthesized and applied as model structures to investigate the potential targeting of fucose binding sites in human norovirus P-dimer. Following previously established solid phase polymer synthesis, eight precision glycomacromolecules varying in number and position of fucose ligands along an oligo(amidoamine) backbone were obtained and then used in a series of binding studies applying native MS, NMR, and X-ray crystallography. We observed only one fucose per glycomacromolecule binding to one P-dimer resulting in similar binding affinities for all fucose-functionalized glycomacromolecules, which based on our current findings we attribute to the overall size of macromolecular ligands and possibly to steric hindrance.


Assuntos
Antivirais/síntese química , Proteínas do Capsídeo/metabolismo , Fucose/química , Norovirus/efeitos dos fármacos , Antivirais/farmacologia , Proteínas do Capsídeo/química , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
17.
J Biol Chem ; 291(10): 4882-93, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26683375

RESUMO

Bacteriophages produce endolysins, which lyse the bacterial host cell to release newly produced virions. The timing of lysis is regulated and is thought to involve the activation of a molecular switch. We present a crystal structure of the activated endolysin CTP1L that targets Clostridium tyrobutyricum, consisting of a complex between the full-length protein and an N-terminally truncated C-terminal cell wall binding domain (CBD). The truncated CBD is produced through an internal translation start site within the endolysin gene. Mutants affecting the internal translation site change the oligomeric state of the endolysin and reduce lytic activity. The activity can be modulated by reconstitution of the full-length endolysin-CBD complex with free CBD. The same oligomerization mechanism applies to the CD27L endolysin that targets Clostridium difficile and the CS74L endolysin that targets Clostridium sporogenes. When the CTP1L endolysin gene is introduced into the commensal bacterium Lactococcus lactis, the truncated CBD is also produced, showing that the alternative start codon can be used in other bacterial species. The identification of a translational switch affecting oligomerization presented here has implications for the design of effective endolysins for the treatment of bacterial infections.


Assuntos
Endopeptidases/química , Sequência de Aminoácidos , Bacteriófagos/enzimologia , Bacteriófagos/genética , Clostridium tyrobutyricum/efeitos dos fármacos , Códon de Iniciação , Endopeptidases/genética , Endopeptidases/metabolismo , Endopeptidases/toxicidade , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica
18.
Glycobiology ; 27(11): 1027-1037, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973640

RESUMO

Human noroviruses (HuNoV), members of the family Caliciviridae, are the major cause of acute viral gastroenteritis worldwide. Successful infection is linked to the ability of the protruding (P) domain of the viral capsid to bind histo-blood group antigens (HBGA). Binding to gangliosides plays a major role for many nonhuman calici- and noroviruses. Increasing evidence points to a broader role of sialylated carbohydrates such as gangliosides in norovirus infection. Here, we compare HBGA and ganglioside binding of a GII.4 HuNoV variant (MI001), previously shown to be infectious in a HuNoV mouse model. Saturation transfer difference nuclear magnetic resonance spectroscopy, native mass spectrometry (MS) and surface plasmon resonance spectroscopy were used to characterize binding epitopes, affinities, stoichiometry and dynamics, focusing on 3'-sialyllactose, the GM3 ganglioside saccharide and B antigen. Binding was observed for 3'-sialyllactose and various HBGAs following a multistep binding process. Intrinsic affinities (Kd) of fucose, 3'-sialyllactose and B antigen were determined for the individual binding steps. Stronger affinities were observed for B antigen over 3'-sialyllactose and fucose, which bound in the mM range. Binding stoichiometry was analyzed by native MS showing the presence of four B antigens or two 3'-sialyllactose in the complex. Epitope mapping of 3'-sialyllactose revealed direct interaction of α2,3-linked sialic acid with the P domain. The ability of HuNoV to engage multiple carbohydrates emphasizes the multivalent nature of norovirus glycan-specificity. Our findings reveal direct binding of a GII.4 HuNoV P dimer to α2,3-linked sialic acid and support a broader role of ganglioside binding in norovirus infection.


Assuntos
Gangliosídeo G(M3)/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Norovirus/metabolismo , Animais , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/metabolismo , Fucose/metabolismo , Lactose/metabolismo , Camundongos , Ligação Proteica
19.
Biomacromolecules ; 17(8): 2522-9, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27355101

RESUMO

Prokaryotes mostly lack membranous compartments that are typical of eukaryotic cells, but instead, they have various protein-based organelles. These include bacterial microcompartments like the carboxysome and the virus-like nanocompartment encapsulin. Encapsulins have an adaptable mechanism for enzyme packaging, which makes it an attractive platform to carry a foreign protein cargo. Here we investigate the assembly pathways and mechanical properties of the cargo-free and cargo-loaded nanocompartments, using a combination of native mass spectrometry, atomic force microscopy and multiscale computational molecular modeling. We show that encapsulin dimers assemble into rigid single-enzyme bacterial containers. Moreover, we demonstrate that cargo encapsulation has a mechanical impact on the shell. The structural similarity of encapsulins to virus capsids is reflected in their mechanical properties. With these robust mechanical properties encapsulins provide a suitable platform for the development of nanotechnological applications.


Assuntos
Proteínas de Bactérias/química , Brevibacterium , Nanotecnologia , Organelas/metabolismo , Modelos Moleculares , Multimerização Proteica
20.
RNA Biol ; 13(10): 973-987, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-27471797

RESUMO

G-quadruplexes have recently moved into focus of research in nucleic acids, thereby evolving in scientific significance from exceptional secondary structure motifs to complex modulators of gene regulation. Aptamers (nucleic acid based ligands with recognition properties for a specific target) that form Gquadruplexes may have particular potential for therapeutic applications as they combine the characteristics of specific targeting and Gquadruplex mediated stability and regulation. We have investigated the structure and target interaction properties of one such aptamer: AIR-3 and its truncated form AIR-3A. These RNA aptamers are specific for human interleukin-6 receptor (hIL-6R), a key player in inflammatory diseases and cancer, and have recently been exploited for in vitro drug delivery studies. With the aim to resolve the RNA structure, global shape, RNA:protein interaction site and binding stoichiometry, we now investigated AIR-3 and AIR-3A by different methods including RNA structure probing, Small Angle X-ray scattering and microscale thermophoresis. Our findings suggest a broader spectrum of folding species than assumed so far and remarkable tolerance toward different modifications. Mass spectrometry based binding site analysis, supported by molecular modeling and docking studies propose a general Gquadruplex affinity for the target molecule hIL-6R.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA