RESUMO
BACKGROUND: Early evidence that patients with (multiple) pre-existing diseases are at highest risk for severe COVID-19 has been instrumental in the pandemic to allocate critical care resources and later vaccination schemes. However, systematic studies exploring the breadth of medical diagnoses are scarce but may help to understand severe COVID-19 among patients at supposedly low risk. METHODS: We systematically harmonized >12 million primary care and hospitalisation health records from ~500,000 UK Biobank participants into 1448 collated disease terms to systematically identify diseases predisposing to severe COVID-19 (requiring hospitalisation or death) and its post-acute sequalae, Long COVID. RESULTS: Here we identify 679 diseases associated with an increased risk for severe COVID-19 (n = 672) and/or Long COVID (n = 72) that span almost all clinical specialties and are strongly enriched in clusters of cardio-respiratory and endocrine-renal diseases. For 57 diseases, we establish consistent evidence to predispose to severe COVID-19 based on survival and genetic susceptibility analyses. This includes a possible role of symptoms of malaise and fatigue as a so far largely overlooked risk factor for severe COVID-19. We finally observe partially opposing risk estimates at known risk loci for severe COVID-19 for etiologically related diseases, such as post-inflammatory pulmonary fibrosis or rheumatoid arthritis, possibly indicating a segregation of disease mechanisms. CONCLUSIONS: Our results provide a unique reference that demonstrates how 1) complex co-occurrence of multiple - including non-fatal - conditions predispose to increased COVID-19 severity and 2) how incorporating the whole breadth of medical diagnosis can guide the interpretation of genetic risk loci.
Early in the COVID-19 pandemic it was clear that people with multiple chronic diseases were vulnerable and needed special protection, such as shielding. However, many people without such diseases required hospital care or died from COVID-19. Here, we investigated the importance of underlying diseases, including mild diseases not requiring hospitalization, for COVID-19 outcomes. Using information from electronic health records we find that many severe, but also less severe diseases increase the risk for severe COVID-19 and its impact on health even months after acute infection (Long COVID). This included an almost two-fold higher risk among people that reported poor well-being and fatigue. Our findings show the value of using primary care health records and the need to consider all the medical history of patients to identify those in need of special protection.
RESUMO
Early evidence that patients with (multiple) pre-existing diseases are at highest risk for severe COVID-19 has been instrumental in the pandemic to allocate critical care resources and later vaccination schemes. However, systematic studies exploring the breadth of medical diagnoses, including common, but non-fatal diseases are scarce, but may help to understand severe COVID-19 among patients at supposedly low risk. Here, we systematically harmonized >12 million primary care and hospitalisation health records from ~500,000 UK Biobank participants into 1448 collated disease terms to systematically identify diseases predisposing to severe COVID-19 (requiring hospitalisation or death) and its post-acute sequalae, Long COVID. We identified a total of 679 diseases associated with an increased risk for severe COVID-19 (n=672) and/or Long COVID (n=72) that spanned almost all clinical specialties and were strongly enriched in clusters of cardio-respiratory and endocrine-renal diseases. For 57 diseases, we established consistent evidence to predispose to severe COVID-19 based on survival and genetic susceptibility analyses. This included a possible role of symptoms of malaise and fatigue as a so far largely overlooked risk factor for severe COVID-19. We finally observed partially opposing risk estimates at known risk loci for severe COVID-19 for etiologically related diseases, such as post-inflammatory pulmonary fibrosis (e.g., MUC5B, NPNT, and PSMD3) or rheumatoid arthritis (e.g., TYK2), possibly indicating a segregation of disease mechanisms. Our results provide a unique reference that demonstrates how 1) complex co-occurrence of multiple - including non-fatal - conditions predispose to increased COVID-19 severity and 2) how incorporating the whole breadth of medical diagnosis can guide the interpretation of genetic risk loci.
RESUMO
In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.