Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Allergy Clin Immunol ; 147(6): 2386-2393.e4, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675820

RESUMO

BACKGROUND: The molecular control of inflammation and epidermal thickening in skin lesions of patients with atopic dermatitis (AD) is not known. Sequestosome 1/p62 is a multifunctional adapter protein implicated in the control of key regulators of cellular homeostasis, such as proinflammatory and mechanistic target of rapamycin signaling. OBJECTIVE: We sought to determine whether p62 plays a role in the cutaneous and systemic manifestations of an AD-like mouse model. METHODS: AD-like skin lesions were induced by deletion of JunB/AP-1, specifically in epidermal keratinocytes (JunBΔep). The contribution of p62 to pathological changes was determined by inactivation of p62 in JunBΔepp62-/- double knockout mice. RESULTS: Expression of p62 was elevated in skin lesions of JunBΔep mice, resembling upregulation of p62 in AD and psoriasis. When p62 was inactivated, JunBΔep-associated defects in the differentiation of keratinocytes, epidermal thickening, skin infiltration by mast cells and neutrophils, and the development of macroscopic skin lesions were significantly reduced. p62 inactivation had little effect on circulating cytokines, but decreased serum IgE. Signaling through mechanistic target of rapamycin and natural factor kappa B was increased in JunBΔep but not in JunBΔepp62-/- double knockout skin, indicating an important role of p62 in enhancing these signaling pathways in the skin during AD-like inflammation. CONCLUSIONS: Our results provide the first in vivo evidence for a proinflammatory role of p62 in skin and suggest that p62-dependent signaling pathways may be promising therapeutic targets to ameliorate the skin manifestations of AD and possibly psoriasis.


Assuntos
Dermatite Atópica/etiologia , Dermatite Atópica/metabolismo , Suscetibilidade a Doenças , Proteína Sequestossoma-1/metabolismo , Animais , Biomarcadores , Doença Crônica , Dermatite Atópica/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Fenótipo , Proteína Sequestossoma-1/genética , Transdução de Sinais , Pele/imunologia , Pele/metabolismo , Pele/patologia
2.
J Allergy Clin Immunol ; 148(3): 799-812.e10, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33662369

RESUMO

BACKGROUND: The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE: Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS: Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS: In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION: Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.


Assuntos
Basófilos/imunologia , Dermatite Atópica/imunologia , Pele/imunologia , Animais , Calcitriol/análogos & derivados , Diferenciação Celular , Citocinas/genética , Citocinas/imunologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Dermatite Atópica/patologia , Toxina Diftérica , Edema/induzido quimicamente , Edema/imunologia , Eosinófilos/imunologia , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Hiperplasia/imunologia , Queratinócitos/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/patologia
3.
Clin Exp Rheumatol ; 34(4 Suppl 98): 17-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27586798

RESUMO

Inflammation is a physiological reaction to tissue injury, pathogen invasion and a natural response to various stress stimuli. Innate and adaptive immune cells are activated and recruited to the site of inflammation to suppress or promote inflammation. The recruitment and activation of immune cells is modulated by cytokines and chemokines, which are regulated by transcription factors, such as AP-1 (Fos/Jun), NF-kB, NFATs and STATs. Moreover, it is now appreciated that chronic inflammation can lead to systemic effects affecting the whole organism by mechanisms which are not well understood.Here we review our recent data obtained from the analyses of psoriasis patient samples as well as from AP-1 (Fos/Jun)-dependent, genetically engineered mouse models. The deletion of two AP-1 factors JunB and c-Jun in an inducible manner in adult mice, specifically in Keratin-5 expressing tissues, leads to a psoriasis-like disease. Importantly, the epidermal proteome of the mutant mice is comparable to psoriasis patient samples. Our analyses revealed that the activation of S100A8/A9-dependent C3 complement as well as a miR-21-dependent TIMP-3/TACE pathway leading to TNF-α shedding, are causally involved in disease development.Epidermal deletion of only JunB in mice leads to chronic skin inflammation with increased levels of pro-inflammatory cytokines and multi-organ involvement. Our recent findings show that chronic skin inflammation induces bone loss through systemic elevated IL-17A signalling. This novel mechanism involves inhibition of osteoblast-mediated bone formation by reduced Wnt signalling with no effect on RANKL-dependent osteoclastic bone resorption. These data have important translational implications; blocking of IL-17A signalling, which is already approved for the treatment of psoriasis, should also be considered to prevent the adverse skeletal consequences of chronic inflammatory diseases.


Assuntos
Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-17/metabolismo , Psoríase/metabolismo , Pele/metabolismo , Via de Sinalização Wnt , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/imunologia , Reabsorção Óssea/patologia , Osso e Ossos/imunologia , Osso e Ossos/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Mediadores da Inflamação/imunologia , Interleucina-17/imunologia , Camundongos Transgênicos , Fenótipo , Psoríase/genética , Psoríase/imunologia , Psoríase/patologia , Pele/imunologia , Pele/patologia
4.
Clin Exp Rheumatol ; 33(4 Suppl 92): S44-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26458100

RESUMO

Skin inflammation is a physiological reaction to tissue injury, pathogen invasion and irritants. During this process, innate and/or adaptive immune cells are activated and recruited to the site of inflammation to either promote or suppress inflammation. The sequential recruitment and activation of immune cells is modulated by a combination of cytokines and chemokines, which are regulated by transcription factors, such as AP-1 (Fos/Jun), NF-κB, NFATs, and STATs. Here we review the present evidence and the underlying mechanisms of how Jun/AP-1 proteins control skin inflammation. Genetically engineered mouse models (GEMMs) in which AP-1 proteins are deleted in the epidermis have revealed that these proteins control cytokine expression at multiple levels. Constitutive epidermal deletion of JunB in mice leads to a multi-organ disease characterised by increased levels of pro-inflammatory cytokines. These JunB-deficient mutant mice display several phenotypes from skin inflammation to a G-CSF-dependent myeloproliferative disease, as well as kidney atrophy and bone loss, reminiscent of psoriasis and systemic lupus erythematosus. Importantly, epidermal deletion of both JunB and c-Jun in an inducible manner in adult mice leads to a psoriasis-like disease, in which the epidermal proteome expression profile is comparable to the one from psoriasis patient samples. In this GEMM and in psoriasis patient-derived material, S100A8/A9-dependent C3/CFB complement activation, as well as a miR-21-dependent TIMP-3/TACE pathway leading to TNF-α shedding, plays causal roles in disease development. The newly identified therapeutic targets from GEMMs together with investigations in human patient samples open up new avenues for therapeutic interventions for psoriasis and related inflammatory skin diseases.


Assuntos
Dermatite/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Pele/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Dermatite/genética , Dermatite/imunologia , Dermatite/patologia , Regulação da Expressão Gênica , Genótipo , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , Pele/imunologia , Pele/patologia , Fator de Transcrição AP-1/genética
5.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051587

RESUMO

Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrated the central role of the Hippo pathway in promoting extensive fibrosis in HS and provided preclinical evidence that the profibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide insights into key aspects of HS pathogenesis with broad therapeutic implications.


Assuntos
Hidradenite Supurativa , Humanos , Hidradenite Supurativa/genética , Via de Sinalização Hippo , Fibrose
6.
Eur J Pharmacol ; 945: 175533, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690055

RESUMO

BACKGROUND: Histamine has been postulated to play a role in atopic dermatitis via histamine receptor 4, mediating pruritic and inflammatory effects. The H4R antagonist adriforant (PF-3893787 or ZPL389) indicated clinical efficacy in a Ph2a study in atopic dermatitis. Preclinical investigations of adriforant had been scarce as experiments in transfectants with H4R from several species suggested partial agonism, not seen in human cells. OBJECTIVE: During the Ph2b trial in AD, we performed experiments to understand the pharmacology of adriforant in primary murine cells and in vivo models. We assessed its effects on ERK phosphorylation and transcriptional changes in bone marrow-derived mast cells, histamine-dependent Ca2+ flux in neurons and histamine-induced itch response. In addition, its impact on MC903-induced skin inflammation was evaluated. RESULTS: We show that, contrary to transfectants, adriforant is a competitive antagonist of the murine histamine receptor 4, antagonizes histamine-induced ERK phosphorylation, normalizes histamine-induced transcriptional changes in mast cells and reduces histamine-dependent Ca2+ flux in neurons. Administration to mice reduces acute histamine-induced itch response. In addition, adriforant ameliorates inflammation in the mouse MC903 model. CONCLUSIONS: Our results suggest that functional inhibition of histamine receptor 4 by adriforant reduces itch and inflammation in vivo. The effects observed in mice, however, did not translate to clinical efficacy in patients as the Ph2b clinical trial with adriforant did not meet pre-specified efficacy endpoints. Given the complex pathogenesis of AD, antagonism of histamine receptor 4 alone appears insufficient to reduce disease severity in AD patients, despite the effects seen in mouse models.


Assuntos
Dermatite Atópica , Humanos , Camundongos , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Histamina/farmacologia , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Receptores Histamínicos , Inflamação/tratamento farmacológico , Pele
7.
Lancet Microbe ; 3(4): e274-e283, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35165669

RESUMO

BACKGROUND: Vaccination is an efficient strategy to control the COVID-19 pandemic. In north Cyprus, vaccine distribution started with CoronaVac followed by BNT162b2, and ChAdOx1 vaccines. An option to obtain a third booster dose with BNT162b2 or CoronaVac was later offered to people fully inoculated with CoronaVac. There are few simultaneous and comparative real-world antibody data for these three vaccines as well as boosters after CoronaVac vaccination. Our study was aimed at evaluating antibody responses after these vaccination schemes. METHODS: We did a prospective, longitudinal population-based study to measure SARS-CoV-2 anti-spike receptor binding domain (RBD) IgG concentrations, assessed by assaying blood samples collected, in participants in north Cyprus who had received the BNT162b2, ChAdOx1, or CoronaVac vaccine at 1 month and 3 months after the second dose. Participants were recruited when they voluntarily came to the laboratory for testing after vaccination, solicited from health-care access points, or from the general population. We also evaluated antibody responses 1 month after a booster dose of BNT162b2 or CoronaVac after primary CoronaVac regimen. Demographics, baseline characteristics, vaccination reactions, and percentage of antibody responders were collected by phone interviews or directly from the laboratory summarised by vaccine and age group. Antibody levels were compared between groups over time by parametric and non-parametric methods. FINDINGS: Recruitment, follow-up, and data collection was done between March 1 and Sept 30, 2021. BNT162b2 induced the highest seropositivity and anti-spike RBD IgG antibody titres, followed by ChAdOx1, and then by CoronaVac. In addition, the rate of decline of antibodies was fastest with CoronaVac, followed by ChAdOx1, and then by BNT162b2. For the older age group, the rate of seropositivity at 3 months after the second dose was 100% for BNT162b2, 90% for ChAdOx1, and 60% for CoronaVac. In the multivariate repeated measures model, lower antibody titres were also significantly associated with male sex, older age, and time since vaccination. Boosting a two-dose CoronaVac regimen at 6 months with a single BNT162b2 dose led to significantly increased titres of IgG compared with boosting with CoronaVac; for the 60 years and older age group, the geometric mean fold rise in antibody titre after the booster relative to 1 month post-baseline was 7·9 (95% CI 5·8-10·8) in the BNT162b2 boost group versus 2·8 (1·6-5·0) in the CoronaVac group. INTERPRETATION: These longitudinal data can help shape vaccination strategies. Given the low antibody titres and fast decline in the CoronaVac group in individuals 60 years or older, more potent vaccine options could be considered as the primary vaccination or booster dose in these high-risk populations to sustain antibody responses for longer. FUNDING: Crowdfunded in north Cyprus.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , Imunoglobulina G , Masculino , Pandemias , Estudos Prospectivos
8.
FASEB J ; 24(4): 1117-27, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19933310

RESUMO

The purpose of this work was to determine platelet and myeloid cell-specific requirements for beta3-containing integrins in hemostasis, bone resorption, and tumor growth. LoxP-flanked mice were generated to study the conditional deletion of beta3-integrin in platelets [knockout in platelets (KOP)] and myeloid cells [knockout in myeloid (KOM)]. Using the beta3KOP and beta3KOM strains of mice, we studied the role of beta3-integrin in hemostasis, bone resorption, and subcutaneous tumor growth. Tissue-specific deletion of platelet beta3-integrins in beta3KOP mice did not affect bone mass but resulted in a severe bleeding phenotype. No growth difference of tumor xenografts or in neoangiogenesis were found in beta3KOP mice, in contrast to the defects observed in germline beta3(-/-) mice. Conditional deletion of myeloid beta3-integrins in beta3KOM mice resulted in osteopetrosis but had no effect on hemostasis or mortality. Tumor growth in beta3KOM mice was increased and accompanied by decreased macrophage infiltration, without increase in blood vessel number. Platelet beta3-integrin deficiency was sufficient to disrupt hemostasis but had no effect on bone mass or tumor growth. Myeloid-specific beta3-integrin deletion was sufficient to perturb bone mass and enhance tumor growth due to reduced macrophage infiltration in the tumors. These results suggest that beta3-integrins have cell-specific roles in complex biological processes.-Morgan, E. A., Schneider, J. G., Baroni, T. E., Uluçkan, O., Heller, E., Hurchla, M. A., Deng, H., Floyd, D., Berdy, A., Prior, J. L., Piwnica-Worms, D., Teitelbaum, S. L., Ross, F. P., Weilbaecher, K. N. Dissection of platelet and myeloid cell defects by conditional targeting of the beta3-integrin subunit.


Assuntos
Plaquetas/metabolismo , Reabsorção Óssea/metabolismo , Hemostasia , Integrina beta3/metabolismo , Macrófagos/metabolismo , Melanoma/metabolismo , Animais , Plaquetas/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Linhagem Celular Tumoral , Hemorragia/genética , Hemorragia/metabolismo , Hemorragia/patologia , Humanos , Integrina beta3/genética , Macrófagos/patologia , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Especificidade de Órgãos/genética , Transplante Heterólogo
9.
Methods Mol Biol ; 1914: 343-348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729475

RESUMO

Melanomas are aggressive cancers of the skin with high metastatic capacity. Mouse models are necessary to delineate the mechanisms of cancer metastasis and xenograft models can also allow examining the role of the host using different genetically-modified mouse models. In this chapter, I provide a detailed protocol for the preparation and inoculation of tumor cells intra-cardially and intra-tibially to achieve bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Melanoma Experimental/patologia , Neoplasias Cutâneas/patologia , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral/transplante , Humanos , Luciferases/química , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Tíbia/diagnóstico por imagem , Tíbia/patologia
10.
Cell Rep ; 29(4): 844-859.e3, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644908

RESUMO

Atopic dermatitis (AD) is a multi-factorial skin disease with a complex inflammatory signature including type 2 and type 17 activation. Although colonization by S. aureus is common in AD, the mechanisms rendering an organism prone to dysbiosis, and the role of IL-17A in the control of S. aureus-induced skin inflammation, are not well understood. Here, we show several pathological aspects of AD, including type 2/type 17 immune responses, elevated IgE, barrier dysfunction, pruritus, and importantly, spontaneous S. aureus colonization in JunBΔep mice, with a large transcriptomic overlap with AD. Additionally, using Rag1-/- mice, we demonstrate that adaptive immune cells are necessary for protection against S. aureus colonization. Prophylactic antibiotics, but not antibiotics after established dysbiosis, reduce IL-17A expression and skin inflammation, examined using Il17a-eGFP reporter mice. Mechanistically, keratinocytes lacking JunB exhibit higher MyD88 levels in vitro and in vivo, previously shown to regulate S. aureus colonization. In conclusion, our data identify JunB as an upstream regulator of microbiota-immune cell interactions and characterize the IL-17A response upon spontaneous dysbiosis.


Assuntos
Dermatite Atópica/imunologia , Epiderme/microbiologia , Microbiota , Infecções Estafilocócicas/imunologia , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Dermatite Atópica/complicações , Dermatite Atópica/microbiologia , Epiderme/imunologia , Feminino , Proteínas de Homeodomínio/genética , Imunoglobulina E/imunologia , Interleucina-17/genética , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA