Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mem Inst Oswaldo Cruz ; 107(6): 713-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22990958

RESUMO

Protein tyrosine phosphatases (PTPs) play an essential role in the regulation of cell differentiation in pathogenic trypanosomatids. In this study, we describe a PTP expressed by the non-pathogenic protozoan Trypanosoma rangeli (TrPTP2). The gene for this PTP is orthologous to the T. brucei TbPTP1 and Trypanosoma cruzi (TcPTP2) genes. Cloning and expression of the TrPTP2 and TcPTP2 proteins allowed anti-PTP2 monoclonal antibodies to be generated in BALB/c mice. When expressed by T. rangeli epimastigotes and trypomastigotes, native TrPTP2 is detected as a ~65 kDa protein associated with the parasite's flagellum. Given that the flagellum is an important structure for cell differentiation in trypanosomatids, the presence of a protein responsible for tyrosine dephosphorylation in the T. rangeli flagellum could represent an interesting mechanism of regulation in this structure.


Assuntos
Anticorpos Monoclonais/imunologia , Flagelos/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Trypanosoma rangeli/enzimologia , Animais , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Proteínas Tirosina Fosfatases/genética , Trypanosoma rangeli/genética , Trypanosoma rangeli/imunologia
2.
Front Cell Dev Biol ; 9: 633195w, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055812

RESUMO

DNA topoisomerases are enzymes that modulate DNA topology. Among them, topoisomerase 3α is engaged in genomic maintenance acting in DNA replication termination, sister chromatid separation, and dissolution of recombination intermediates. To evaluate the role of this enzyme in Trypanosoma cruzi, the etiologic agent of Chagas disease, a topoisomerase 3α knockout parasite (TcTopo3α KO) was generated, and the parasite growth, as well as its response to several DNA damage agents, were evaluated. There was no growth alteration caused by the TcTopo3α knockout in epimastigote forms, but a higher dormancy rate was observed. TcTopo3α KO trypomastigote forms displayed reduced invasion rates in LLC-MK2 cells when compared with the wild-type lineage. Amastigote proliferation was also compromised in the TcTopo3α KO, and a higher number of dormant cells was observed. Additionally, TcTopo3α KO epimastigotes were not able to recover cell growth after gamma radiation exposure, suggesting the involvement of topoisomerase 3α in homologous recombination. These parasites were also sensitive to drugs that generate replication stress, such as cisplatin (Cis), hydroxyurea (HU), and methyl methanesulfonate (MMS). In response to HU and Cis treatments, TcTopo3α KO parasites showed a slower cell growth and was not able to efficiently repair the DNA damage induced by these genotoxic agents. The cell growth phenotype observed after MMS treatment was similar to that observed after gamma radiation, although there were fewer dormant cells after MMS exposure. TcTopo3α KO parasites showed a population with sub-G1 DNA content and strong γH2A signal 48 h after MMS treatment. So, it is possible that DNA-damaged cell proliferation due to the absence of TcTopo3α leads to cell death. Whole genome sequencing of MMS-treated parasites showed a significant reduction in the content of the multigene families DFG-1 and RHS, and also a possible erosion of the sub-telomeric region from chromosome 22, relative to non-treated knockout parasites. Southern blot experiments suggest telomere shortening, which could indicate genomic instability in TcTopo3α KO cells owing to MMS treatment. Thus, topoisomerase 3α is important for homologous recombination repair and replication stress in T. cruzi, even though all the pathways in which this enzyme participates during the replication stress response remains elusive.

3.
Mol Biochem Parasitol ; 200(1-2): 9-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25912925

RESUMO

The Trypanosoma cruzi adenylyl cyclase (AC) multigene family encodes different isoforms (around 15) sharing a variable large N-terminal domain, which is extracellular and receptor-like, followed by a transmembrane helix and a conserved C-terminal catalytic domain. It was proposed that these key enzymes in the cAMP signalling pathway allow the parasite to sense its changing extracellular milieu in order to rapidly adapt to its new environment, which is generally achieved through a differentiation process. One of the critical differentiation events the parasitic protozoan T. cruzi undergoes during its life cycle, known as metacyclogenesis, occurs in the digestive tract of the insect and corresponds to the differentiation from noninfective epimastigotes to infective metacyclic trypomastigote forms. By in vitro monitoring the activity of AC during metacyclogenesis, we showed that both the activity of AC and the intracellular cAMP content follow a similar pattern of transient stimulation in a two-step process, with a first activation peak occurring during the first hours of nutritional stress and a second peak between 6 and 48 h, corresponding to the cellular adhesion. During this differentiation process, a general mechanism of upregulation of AC expression of both mRNA and protein is triggered and in particular for a major subclass of these enzymes that are present in various gene copies commonly associated to the THT gene clusters. Although the scattered genome distribution of these gene copies is rather unusual in trypanosomatids and seems to be a recent acquisition in the evolution of the T. cruzi clade, their encoded product redistributed on the flagellum of the parasite upon differentiation could be important to sense the extracellular milieu.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento , Adenilil Ciclases/química , Adenilil Ciclases/genética , Sequência de Aminoácidos , Animais , Doença de Chagas/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Estágios do Ciclo de Vida , Dados de Sequência Molecular , Família Multigênica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Regulação para Cima
5.
Int J Parasitol ; 39(1): 49-58, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18713637

RESUMO

We characterized a gene encoding an YchF-related protein, TcYchF, potentially associated with the protein translation machinery of Trypanosoma cruzi. YchF belongs to the translation factor-related (TRAFAC) class of P-loop NTPases. The coding region of the gene is 1185bp long and encodes a 44.3kDa protein. BlastX searches showed TcYchF to be very similar (45-86%) to putative GTP-binding proteins from eukaryotes, including some species of trypanosomatids (Leishmania major and Trypanosoma brucei). A lower but significant level of similarity (38-43%) was also found between the predicted sequences of TcYchF and bacterial YyaF/YchF GTPases of the Spo0B-associated GTP-binding protein (Obg) family. Some of the most important features of the G domain of this family of GTPases are conserved in TcYchF. However, we found that TcYchF preferentially hydrolyzed ATP rather than GTP. The function of YyaF/YchF is unknown, but other members of the Obg family are known to be associated with ribosomal subunits. Immunoblots of the polysome fraction from sucrose gradients showed that TcYchF was associated with ribosomal subunits and polysomes. Immunoprecipitation assays showed that TcYchF was also associated with the proteasome of T. cruzi. Furthermore, inactivation of the T. brucei homolog of TcYchF by RNA interference inhibited the growth of procyclic forms of the parasite. These data suggest that this protein plays an important role in the translation machinery of trypanosomes.


Assuntos
Adenosina Trifosfatases/genética , Genes de Protozoários , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Adenosina Trifosfatases/metabolismo , Animais , Sequência de Bases , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Masculino , Dados de Sequência Molecular , RNA de Protozoário/metabolismo , Coelhos
6.
Mem. Inst. Oswaldo Cruz ; 107(6): 713-719, set. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-649484

RESUMO

Protein tyrosine phosphatases (PTPs) play an essential role in the regulation of cell differentiation in pathogenic trypanosomatids. In this study, we describe a PTP expressed by the non-pathogenic protozoan Trypanosoma rangeli (TrPTP2). The gene for this PTP is orthologous to the T. brucei TbPTP1 and Trypanosoma cruzi (TcPTP2) genes. Cloning and expression of the TrPTP2 and TcPTP2 proteins allowed anti-PTP2 monoclonal antibodies to be generated in BALB/c mice. When expressed by T. rangeli epimastigotes and trypomastigotes, native TrPTP2 is detected as a ~65 kDa protein associated with the parasite's flagellum. Given that the flagellum is an important structure for cell differentiation in trypanosomatids, the presence of a protein responsible for tyrosine dephosphorylation in the T. rangeli flagellum could represent an interesting mechanism of regulation in this structure.


Assuntos
Animais , Camundongos , Anticorpos Monoclonais/imunologia , Flagelos/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Trypanosoma rangeli/enzimologia , Imunização , Camundongos Endogâmicos BALB C , Filogenia , Proteínas Tirosina Fosfatases/genética , Trypanosoma rangeli/genética , Trypanosoma rangeli/imunologia
9.
Biochem Biophys Res Commun ; 319(1): 169-77, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15158457

RESUMO

We have identified two zinc finger proteins of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease in humans. These proteins, named tcZFP1 and tcZFP2, share the unusual zinc finger motif (CCCH) found in a diverse range of RNA-binding proteins involved in various aspects of the control of cell homeostasis and differentiation. We report here the functional expression of a recombinant tcZFP1, and the relative affinity and stability of the specific complexes formed between the protein and synthetic oligoribonucleotides containing C-rich sequences.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Oligorribonucleotídeos/química , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Animais , Northern Blotting , Clonagem Molecular , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde , Cinética , Proteínas Luminescentes/química , Dados de Sequência Molecular , Polirribossomos/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes/química , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Dedos de Zinco
11.
Pesqui. vet. bras ; Pesqui. vet. bras;21(2): 72-6, abr.-jun. 2001. ilus, tab
Artigo em Inglês | LILACS | ID: lil-290514

RESUMO

An indirect enzyme-linked immunosorbent assay (ELISA) using a crude antigen was evaluated for its performance to detect Babesia bigemina antibodies. The sensitivity and specificity were 98.0 per cent and 99.0 per cent, respectively. In agreement with the high specificity, no cross-reactions were verified with sera from calves inoculated three times with 10 7(subscribe) Babesia bovis organisms. With regard to the comparison of ELISA and indirect fluorescent antibody test (IFAT) in detecting antibodies against B. bigemina in calves experimentally infected with five Brazilian geographical isolates of this hemoparasite, IFAT was able to detect antibodies one day earlier in most of the calves' sera. There was a good agreement between results shown by ELISA and IFAT with sera from an enzootically stable area (k=0.61). However, there was no agreement between these serological tests with sera from an enzootically unstable area (k=0.33). The ELISA was employed in an epidemiological survey using with 1,367 sera from four counties in the Pantanal of Mato Grosso do Sul and characterized this region as an enzootically stable area, since the prevalence ranged from 87.7 to 98.9 per cent. Therefore, this ELISA with high sensitivity, specificity and performance similar to IFAT can be employed in serological diagnosis of B. bigemina


Assuntos
Babesia , Ensaio de Imunoadsorção Enzimática , Testes Sorológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA