Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Environ Sci Process Impacts ; 20(10): 1454-1468, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30225499

RESUMO

Determination and assessment of airborne fungal particles is complex and results of different sampling and analytical strategies are hard to compare due to limitations of each of the techniques. Here, an indoor mold detection system based on quantitative polymerase chain reaction (qPCR) is described and validated for its reliability and stability to identify airborne fungal particles collected. Data obtained from testing the system with fungal DNA, spore suspensions and bioaerosols indicated a need for spiking and normalization of measurements due to material loss and assay specific bias. Considering the loss of material during sample processing, detection limits defined for suspensions of Tritirachium oryzae spores were roughly 18 spores per sample. Detection of fungal spore mixtures nebulized under controlled conditions in a bioaerosol chamber showed generally 2-3 times higher normalized values measured with the molecular system compared to cultivation. Data obtained from a mold infested indoor sampling site and its corresponding outdoor reference measurement showed good correlations between qPCR and high-throughput sequencing (rho = 0.83, p < 0.01), if Cladosporium species were excluded. Taking necessary data normalization into account, the described qPCR detection system shows great potential to complement commonly used culture based approaches with the aim to improve the precision of indoor mold assessments. In contrast to already available qPCR assays that detect certain molds on a species level, this system covers a broad range of relevant fungal communities, serving as a promising alternative to high-throughput sequencing to identify indoor molds.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Ascomicetos/isolamento & purificação , DNA Fúngico/análise , Monitoramento Ambiental/métodos , Ascomicetos/classificação , Ascomicetos/genética , Cladosporium , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Esporos Fúngicos/isolamento & purificação
2.
Mol Biol Cell ; 26(17): 3013-29, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26133384

RESUMO

Trypanosoma brucei is the causative agent of African sleeping sickness, a devastating disease endemic to sub-Saharan Africa with few effective treatment options. The parasite is highly polarized, including a single flagellum that is nucleated at the posterior of the cell and adhered along the cell surface. These features are essential and must be transmitted to the daughter cells during division. Recently we identified the T. brucei homologue of polo-like kinase (TbPLK) as an essential morphogenic regulator. In the present work, we conduct proteomic screens to identify potential TbPLK binding partners and substrates to better understand the molecular mechanisms of kinase function. These screens identify a cohort of proteins, most of which are completely uncharacterized, which localize to key cytoskeletal organelles involved in establishing cell morphology, including the flagella connector, flagellum attachment zone, and bilobe structure. Depletion of these proteins causes substantial changes in cell division, including mispositioning of the kinetoplast, loss of flagellar connection, and prevention of cytokinesis. The proteins identified in these screens provide the foundation for establishing the molecular networks through which TbPLK directs cell morphogenesis in T. brucei.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Divisão Celular/fisiologia , Células Cultivadas , Citocinese , Flagelos/metabolismo , Morfogênese , Fosforilação , Ligação Proteica , Proteômica/métodos , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Quinase 1 Polo-Like
3.
PLoS One ; 5(12): e15357, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21203456

RESUMO

In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Sistema de Sinalização das MAP Quinases , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Epiderme Vegetal/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Diferenciação Celular , Linhagem da Célula , Núcleo Celular/metabolismo , Proliferação de Células , Fosfatases da Proteína Quinase Ativada por Mitógeno/fisiologia , Fenótipo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA