Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11992, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491593

RESUMO

The family Cervidae is the second most diverse in the infraorder Pecora and is characterized by variability in the diploid chromosome numbers among species. X chromosomes in Cervidae evolved through complex chromosomal rearrangements of conserved segments within the chromosome, changes in centromere position, heterochromatic variation, and X-autosomal translocations. The family Cervidae consists of two subfamilies: Cervinae and Capreolinae. Here we build a detailed X chromosome map with 29 cattle bacterial artificial chromosomes of representatives of both subfamilies: reindeer (Rangifer tarandus), gray brocket deer (Mazama gouazoubira), Chinese water deer (Hydropotes inermis) (Capreolinae); black muntjac (Muntiacus crinifrons), tufted deer (Elaphodus cephalophus), sika deer (Cervus nippon) and red deer (Cervus elaphus) (Cervinae). To track chromosomal rearrangements during Cervidae evolution, we summarized new data, and compared them with available X chromosomal maps and chromosome level assemblies of other species. We demonstrate the types of rearrangements that may have underlined the variability of Cervidae X chromosomes. We detected two types of cervine X chromosome-acrocentric and submetacentric. The acrocentric type is found in three independent deer lineages (subfamily Cervinae and in two Capreolinae tribes-Odocoileini and Capreolini). We show that chromosomal rearrangements on the X-chromosome in Cervidae occur at a higher frequency than in the entire Ruminantia lineage: the rate of rearrangements is 2 per 10 million years.


Assuntos
Cervos , Rena , Bovinos , Animais , Cervos/genética , Ruminantes/genética , Cromossomos , Cervo Muntjac/genética , Cromossomo X/genética , Rena/genética
2.
J Wildl Dis ; 54(1): 170-174, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053427

RESUMO

The critically endangered population of Far Eastern leopards ( Panthera pardus orientalis) may number as few as 60 individuals and is at risk from stochastic processes such as infectious disease. During May 2015, a case of canine distemper virus (CDV) was diagnosed in a wild leopard exhibiting severe neurologic disease in the Russian territory of Primorskii Krai. Amplified sequences of the CDV hemagglutinin gene and phosphoprotein gene aligned within the Arctic-like clade of CDV, which includes viruses from elsewhere in Russia, China, Europe, and North America. Histologic examination of cerebral tissue revealed perivascular lymphoid cuffing and demyelination of the white matter consistent with CDV infection. Neutralizing antibodies against CDV were detected in archived serum from two wild Far Eastern leopards sampled during 1993-94, confirming previous exposure in the population. This leopard population is likely too small to maintain circulation of CDV, suggesting that infections arise from spillover from more-abundant domestic or wild carnivore reservoirs. Increasing the population size and establishment of additional populations of leopards would be important steps toward securing the future of this subspecies and reducing the risk posed by future outbreaks of CDV or other infectious diseases.


Assuntos
Vírus da Cinomose Canina , Cinomose/virologia , Panthera/virologia , Animais , Animais Selvagens , Cinomose/epidemiologia , Cinomose/patologia , Espécies em Perigo de Extinção , Feminino , Federação Russa/epidemiologia
3.
Integr Zool ; 10(4): 376-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25950598

RESUMO

Poaching and trans-boundary trafficking of tigers and body parts are threatening the world's last remaining wild tigers. Development of an efficient molecular genetic assay for tracing the origins of confiscated specimens will assist in law enforcement and wildlife forensics for this iconic flagship species. We developed a multiplex genotyping system "tigrisPlex" to simultaneously assess 22 short tandem repeat (STR, or microsatellite) loci and a gender-identifying SRY gene, all amplified in 4 reactions using as little as 1 ng of template DNA. With DNA samples used for between-run calibration, the system generates STR genotypes that are directly compatible with voucher tiger subspecies genetic profiles, hence making it possible to identify subspecies via bi-parentally inherited markers. We applied "tigrisPlex" to 12 confiscated specimens from Russia and identified 6 individuals (3 females and 3 males), each represented by duplicated samples and all designated as Amur tigers (Panthera tigris altaica) with high confidence. This STR multiplex system can serve as an effective and versatile approach for genetic profiling of both wild and captive tigers as well as confiscated tiger products, fulfilling various conservation needs for identifying the origins of tiger samples.


Assuntos
Genes sry , Tigres/genética , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Feminino , Masculino , Repetições de Microssatélites , Análise de Sequência de DNA , Especificidade da Espécie
4.
Integr Zool ; 10(4): 329-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939829

RESUMO

Canine distemper virus (CDV) has recently been identified in populations of wild tigers in Russia and India. Tiger populations are generally too small to maintain CDV for long periods, but are at risk of infections arising from more abundant susceptible hosts that constitute a reservoir of infection. Because CDV is an additive mortality factor, it could represent a significant threat to small, isolated tiger populations. In Russia, CDV was associated with the deaths of tigers in 2004 and 2010, and was coincident with a localized decline of tigers in Sikhote-Alin Biosphere Zapovednik (from 25 tigers in 2008 to 9 in 2012). Habitat continuity with surrounding areas likely played an important role in promoting an ongoing recovery. We recommend steps be taken to assess the presence and the impact of CDV in all tiger range states, but should not detract focus away from the primary threats to tigers, which include habitat loss and fragmentation, poaching and retaliatory killing. Research priorities include: (i) recognition and diagnosis of clinical cases of CDV in tigers when they occur; and (ii) collection of baseline data on the health of wild tigers. CDV infection of individual tigers need not imply a conservation threat, and modeling should complement disease surveillance and targeted research to assess the potential impact to tiger populations across the range of ecosystems, population densities and climate extremes occupied by tigers. Describing the role of domestic and wild carnivores as contributors to a local CDV reservoir is an important precursor to considering control measures.


Assuntos
Vírus da Cinomose Canina/fisiologia , Cinomose/epidemiologia , Tigres/virologia , Animais , Conservação dos Recursos Naturais , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Cinomose/mortalidade , Cinomose/transmissão , Dinâmica Populacional , Federação Russa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA