Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 117(13): 3521-8, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21278354

RESUMO

Hoxb4 overexpression promotes dramatic expansion of bone marrow (BM) hematopoietic stem cells (HSCs) without leukemic transformation and induces development of definitive HSCs from early embryonic yolk sac and differentiating embryonic stem cells. Knockout studies of Hoxb4 showed little effect on hematopoiesis, but interpretation of these results is obscured by the lack of direct evidence that Hoxb4 is expressed in HSCs and possible compensatory effects of other (Hox) genes. To evaluate accurately the pattern of Hoxb4 expression and to gain a better understanding of the physiologic role of Hoxb4 in the hemato-poietic system, we generated a knock-in Hoxb4-yellow fluorescent protein (YFP) reporter mouse model. We show that BM Lin(-)Sca1(+)c-Kit(+) cells express Hoxb4-YFP and demonstrate functionally in the long-term repopulation assay that definitive HSCs express Hoxb4. Similarly, aorta-gonad-mesonephrous-derived CD45(+)CD144(+) cells, enriched for HSCs, express Hoxb4. Furthermore, yolk sac and placental HSC populations express Hoxb4. Unexpectedly, Hoxb4 expression in the fetal liver HSCs is lower than in the BM, reaching negligible levels in some HSCs, suggesting an insignificant role of Hoxb4 in expansion of fetal liver HSCs. Hoxb4 expression therefore would not appear to correlate with the cycling status of fetal liver HSCs, although highly proliferative HSCs from young BM show strong Hoxb4 expression.


Assuntos
Proteínas de Bactérias/genética , Rastreamento de Células/métodos , Genes Reporter , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas Luminescentes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Embrião de Mamíferos , Feminino , Genes Reporter/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Modelos Biológicos , Gravidez , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo
2.
J Immunol Methods ; 337(2): 81-7, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18602924

RESUMO

We have produced and characterised reporter knock-in CD45-YFP and CD45-Cre mice that drive expression of yellow fluorescent protein (YFP) and Cre-recombinase, respectively under control of the haematopoietic CD45 locus. CD45-YFP expression was characterised in various haematopoietic cells populations. The activity of CD45-Cre mice was assessed by crossing with silent GFP reporter mice. Flow cytometry analysis indicated that both CD45-YFP and CD45-Cre were strongly expressed in the CD45(+) compartment of peripheral blood. Expression of these markers in various populations of adult bone marrow, including primitive cell populations was also determined. These mouse models will be useful for the direct visualisation of haematopoietic cells, especially at the periphery, and for gene knockout studies, in the haematopoietic system.


Assuntos
Sistema Hematopoético/metabolismo , Antígenos Comuns de Leucócito/fisiologia , Animais , Integrases/fisiologia , Antígenos Comuns de Leucócito/genética , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Genesis ; 36(3): 168-76, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12872249

RESUMO

Conditional activation and inactivation of genes using the Cre/loxP recombination system is a powerful tool for the analysis of gene function and for tracking cell fate. Here we report a novel silent EGFP reporter mouse line generated by enhancer trap technology using embryonic stem (ES) cells. Following transfection with the silent EGFP reporter construct, positive ES cell clones were treated with Cre recombinase. These "activated clones" were then further selected on the basis of ubiquitous EGFP expression during in vitro differentiation. The parental "silent" clones were then used for generating mice. Upon Cre-mediated activation in ovo tissues tested from these mice express EGFP. Long-term, strong and sustainable expression of EGFP is observed in most myeloid and lymphoid cells. As shown by in vivo transplantation assays, the majority of hematopoietic stem cells (HSCs) and spleen colony-forming units (CFU-S) reside within the EGFP positive fraction. Most in vitro colony-forming units (CFU-Cs) isolated from bone marrow also express EGFP. Thus, these reporter mice are useful for the analysis of Cre-mediated recombination in HSCs and hematopoietic progenitor cells. This, in combination with the high accessibility of the loxP sites, makes these mice a valuable tool for testing cell/tissue-specific Cre-expressing mice. .


Assuntos
Expressão Gênica , Genes Reporter/genética , Células-Tronco Hematopoéticas/metabolismo , Integrases/metabolismo , Proteínas Virais/metabolismo , Animais , Proteínas de Fluorescência Verde , Integrases/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Transfecção , Proteínas Virais/genética
4.
Development ; 129(21): 4891-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12397098

RESUMO

In the developing mouse embryo the first definitive (transplantable-into-the-adult) haematopoietic stem cells/long-term repopulating units (HSC/RUs) emerge in the AGM region and umbilical vessels on 10-11 days post coitum (d.p.c.). Here, by limiting dilution analysis, we anatomically map the development of definitive HSC/RUs in different embryonic tissues during early colonisation of the liver. We show that by day 12 p.c. the mouse embryo contains about 66 definitive HSC/RUs (53 in the liver, 13 in other tissues), whereas on the previous day the total number of definitive HSC/RUs in the entire conceptus is only about 3. Owing to the length of the cell cycle this dramatic increase in the number of definitive HSC/RUs in only 24 hours is unlikely to be explained purely by cell division. Therefore, extensive maturation of pre-definitive HSCs to a state when they become definitive must take place in the day 11-12 embryo. Here we firstly identify the numbers of HSCs in various organs at 11-13 d.p.c. and secondly, using an organ culture approach, we quantitatively assess the potential of the aorta-gonadmesonephros (AGM) region and the yolk sac to produce/expand definitive HSC/RUs during days 11-12 of embryogenesis. We show that the capacity of the AGM region to generate definitive HSC/RUs is high on 11 d.p.c. but significantly reduced by 12 d.p.c. Conversely, at 12 d.p.c. the YS acquires the capacity to expand and/or generate definitive HSCs/RUs, whereas it is unable to do so on 11 d.p.c. Thus, the final steps in development of definitive HSC/RUs may occur not only within the AGM region, as was previously thought, but also in the yolk sac microenvironment. Our estimates indicate that the cumulative activity of the AGM region and the yolk sac is sufficient to provide the day 12 liver with a large number of definitive HSC/RUs, suggesting that the large pool of definitive HSC/RUs in day 12 foetal liver is formed predominantly by recruiting 'ready-to-use' definitive HSC/RUs from extra-hepatic sources. In accordance with this we observe growing numbers of definitive HSC/RUs in the circulation during days 11-13 of gestation, suggesting a route via which these HSCs migrate.


Assuntos
Células-Tronco Hematopoéticas/citologia , Fígado/embriologia , Animais , Aorta/citologia , Aorta/embriologia , Movimento Celular , Feminino , Idade Gestacional , Gônadas/citologia , Gônadas/embriologia , Transplante de Células-Tronco Hematopoéticas , Fígado/citologia , Masculino , Mesonefro/citologia , Mesonefro/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Técnicas de Cultura de Órgãos , Gravidez , Saco Vitelino/citologia , Saco Vitelino/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA