Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 142(1): 39-51, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603013

RESUMO

An in vivo screen was performed in search of chemicals capable of enhancing neuron formation in the hippocampus of adult mice. Eight of 1000 small molecules tested enhanced neuron formation in the subgranular zone of the dentate gyrus. Among these was an aminopropyl carbazole, designated P7C3, endowed with favorable pharmacological properties. In vivo studies gave evidence that P7C3 exerts its proneurogenic activity by protecting newborn neurons from apoptosis. Mice missing the gene encoding neuronal PAS domain protein 3 (NPAS3) are devoid of hippocampal neurogenesis and display malformation and electrophysiological dysfunction of the dentate gyrus. Prolonged administration of P7C3 to npas3(-/-) mice corrected these deficits by normalizing levels of apoptosis of newborn hippocampal neurons. Prolonged administration of P7C3 to aged rats also enhanced neurogenesis in the dentate gyrus, impeded neuron death, and preserved cognitive capacity as a function of terminal aging. PAPERCLIP:


Assuntos
Carbazóis/farmacologia , Avaliação Pré-Clínica de Medicamentos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Fármacos Neuroprotetores/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carbazóis/química , Cognição/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Fármacos Neuroprotetores/química , Ratos
2.
Nature ; 526(7573): 430-4, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469053

RESUMO

Deep brain stimulation (DBS) has improved the prospects for many individuals with diseases affecting motor control, and recently it has shown promise for improving cognitive function as well. Several studies in individuals with Alzheimer disease and in amnesic rats have demonstrated that DBS targeted to the fimbria-fornix, the region that appears to regulate hippocampal activity, can mitigate defects in hippocampus-dependent memory. Despite these promising results, DBS has not been tested for its ability to improve cognition in any childhood intellectual disability disorder. Such disorders are a pressing concern: they affect as much as 3% of the population and involve hundreds of different genes. We proposed that stimulating the neural circuits that underlie learning and memory might provide a more promising route to treating these otherwise intractable disorders than seeking to adjust levels of one molecule at a time. We therefore studied the effects of forniceal DBS in a well-characterized mouse model of Rett syndrome (RTT), which is a leading cause of intellectual disability in females. Caused by mutations that impair the function of MeCP2 (ref. 6), RTT appears by the second year of life in humans, causing profound impairment in cognitive, motor and social skills, along with an array of neurological features. RTT mice, which reproduce the broad phenotype of this disorder, also show clear deficits in hippocampus-dependent learning and memory and hippocampal synaptic plasticity. Here we show that forniceal DBS in RTT mice rescues contextual fear memory as well as spatial learning and memory. In parallel, forniceal DBS restores in vivo hippocampal long-term potentiation and hippocampal neurogenesis. These results indicate that forniceal DBS might mitigate cognitive dysfunction in RTT.


Assuntos
Estimulação Encefálica Profunda , Fórnice/fisiologia , Hipocampo/fisiologia , Hipocampo/fisiopatologia , Memória/fisiologia , Síndrome de Rett/psicologia , Síndrome de Rett/terapia , Animais , Cognição/fisiologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Medo/fisiologia , Medo/psicologia , Feminino , Fórnice/citologia , Fórnice/fisiopatologia , Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Camundongos , Neurogênese , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Aprendizagem Espacial/fisiologia
3.
J Bone Joint Surg Am ; 105(1): 42-52, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598474

RESUMO

BACKGROUND: Gram-negative periprosthetic joint infections (GN-PJIs) present unique challenges. Our aim was to establish a clinically representative GN-PJI model that recapitulates biofilm formation in vivo. We also hypothesized that biofilm formation on the implant surface would affect its ability to osseointegrate. METHODS: Three-dimensionally-printed medical-grade titanium hip implants were used to replace the femoral heads of male Sprague-Dawley rats. GN-PJI was induced using 2 bioluminescent Pseudomonas aeruginosa strains: a reference strain (PA14-lux) and a mutant biofilm-defective strain (ΔflgK-lux). Infection was monitored in real time using an in vivo imaging system (IVIS) and magnetic resonance imaging (MRI). Bacterial loads were quantified utilizing the viable colony count. Biofilm formation at the bone-implant interface was visualized using field-emission scanning electron microscopy (FE-SEM). Implant stability, as an outcome, was directly assessed by quantifying osseointegration using microcomputed tomography, and indirectly assessed by identifying gait-pattern changes. RESULTS: Bioluminescence detected by the IVIS was focused on the hip region and demonstrated localized infection, with greater ability of PA14-lux to persist in the model compared with the ΔflgK-lux strain, which is defective in biofilm formation. This was corroborated by MRI, as PA14-lux induced relatively larger implant-related abscesses. Biofilm formation at the bone-implant interface induced by PA14-lux was visualized using FE-SEM versus defective-biofilm formation by ΔflgK-lux. Quantitatively, the average viable colony count of the sonicated implants, in colony-forming units/mL, was 3.77 × 108 for PA14-lux versus 3.65 × 103 for ΔflgK-lux, with a 95% confidence interval around the difference of 1.45 × 108 to 6.08 × 108 (p = 0.0025). This difference in the ability to persist in the model was reflected significantly on implant osseointegration, with a mean intersection surface of 4.1 × 106 ± 1.99 × 106 µm2 for PA14-lux versus 6.44 × 106 ± 2.53 × 106 µm2 for ΔflgK-lux and 7.08 × 106 ± 1.55 × 106 µm2 for the noninfected control (p = 0.048). CONCLUSIONS: To our knowledge, this proposed, novel in vivo biofilm-based model is the most clinically representative for GN-PJI to date, since animals can bear weight on the implant, poor osseointegration was associated with biofilm formation, and localized PJI was assessed by various modalities. CLINICAL RELEVANCE: This model will allow for more reliable testing of novel biofilm-targeting therapeutics.


Assuntos
Artrite Infecciosa , Hemiartroplastia , Prótese de Quadril , Infecções Relacionadas à Prótese , Ratos , Masculino , Animais , Infecções Relacionadas à Prótese/microbiologia , Microtomografia por Raio-X , Ratos Sprague-Dawley , Biofilmes , Prótese de Quadril/efeitos adversos , Artrite Infecciosa/tratamento farmacológico , Antibacterianos/uso terapêutico
4.
J Neurosci ; 31(26): 9772-86, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21715642

RESUMO

Transcriptional regulation is a critical mechanism in the birth, specification, and differentiation of granule neurons in the adult hippocampus. One of the first negative-acting transcriptional regulators implicated in vertebrate development is repressor element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF)--thought to regulate hundreds of neuron-specific genes--yet its function in the adult brain remains elusive. Here we report that REST/NRSF is required to maintain the adult neural stem cell (NSC) pool and orchestrate stage-specific differentiation. REST/NRSF recruits CoREST and mSin3A corepressors to stem cell chromatin for the regulation of pro-neuronal target genes to prevent precocious neuronal differentiation in cultured adult NSCs. Moreover, mice lacking REST/NRSF specifically in NSCs display a transient increase in adult neurogenesis that leads to a loss in the neurogenic capacity of NSCs and eventually diminished granule neurons. Our work identifies REST/NRSF as a master negative regulator of adult NSC differentiation and offers a potential molecular target for neuroregenerative approaches.


Assuntos
Encéfalo/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Imunoprecipitação , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Bone Joint J ; 103-B(7 Supple B): 9-16, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34192921

RESUMO

AIMS: The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. METHODS: Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces. RESULTS: All animals tolerated surgery well, with preservation of gait mechanics and weightbearing in control individuals. Postoperative in vivo imaging demonstrated predictable evolution of infection with logarithmic signal decay coinciding with abscess formation. Postmortem mCT qualitative volumetric analysis showed high contact area and both cement-bone and cement-implant interdigitation. FE-SEM revealed biofilm formation on the prosthetic head. CONCLUSION: This study demonstrates the utility of a new, high-fidelity model of in vivo PJI using cemented hip hemiarthroplasty in rats. Inoculation with bioluminescent bacteria allows for non-invasive, real-time monitoring of infection. Cite this article: Bone Joint J 2021;103-B(7 Supple B):9-16.


Assuntos
Hemiartroplastia , Prótese de Quadril , Infecções Relacionadas à Prótese/diagnóstico por imagem , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/microbiologia , Animais , Distinções e Prêmios , Biofilmes , Cimentos Ósseos , Modelos Animais de Doenças , Marcha , Masculino , Microscopia Eletrônica de Varredura , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
6.
Front Neurol ; 11: 593554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193060

RESUMO

Rett Syndrome (RTT) is a neurodevelopmental disorder caused by loss of function of the transcriptional regulator Methyl-CpG-Binding Protein 2 (MeCP2). In addition to the characteristic loss of hand function and spoken language after the first year of life, people with RTT also have a variety of physiological and autonomic abnormalities including disrupted breathing rhythms characterized by bouts of hyperventilation and an increased frequency of apnea. These breathing abnormalities, that likely involve alterations in both the circuitry underlying respiratory pace making and those underlying breathing response to environmental stimuli, may underlie the sudden unexpected death seen in a significant fraction of people with RTT. In fact, mice lacking MeCP2 function exhibit abnormal breathing rate response to acute hypoxia and maintain a persistently elevated breathing rate rather than showing typical hypoxic ventilatory decline that can be observed among their wild-type littermates. Using genetic and pharmacological tools to better understand the course of this abnormal hypoxic breathing rate response and the neurons driving it, we learned that the abnormal hypoxic breathing response is acquired as the animals mature, and that MeCP2 function is required within excitatory, inhibitory, and modulatory populations for a normal hypoxic breathing rate response. Furthermore, mice lacking MeCP2 exhibit decreased hypoxia-induced neuronal activity within the nucleus tractus solitarius of the dorsal medulla. Overall, these data provide insight into the neurons driving the circuit dysfunction that leads to breathing abnormalities upon loss of MeCP2. The discovery that combined dysfunction across multiple neuronal populations contributes to breathing dysfunction may provide insight into sudden unexpected death in RTT.

7.
Elife ; 92020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32159514

RESUMO

Methylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons. Loss of either protein causes overlapping and distinct features from the behavioral to molecular level. Loss of Dnmt3a causes global loss of mCH and a subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than MeCP2 loss. These data suggest that MeCP2 is responsible for reading only part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Feminino , Predisposição Genética para Doença , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Síndrome de Rett/genética
8.
Genetics ; 215(4): 1055-1066, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554600

RESUMO

Dravet syndrome is a developmental epileptic encephalopathy caused by pathogenic variation in SCN1A To characterize the pathogenic substitution (p.H939R) of a local individual with Dravet syndrome, fibroblast cells from the individual were reprogrammed to pluripotent stem cells and differentiated into neurons. Sodium currents of these neurons were compared with healthy control induced neurons. A novel Scn1aH939R/+ mouse model was generated with the p.H939R substitution. Immunohistochemistry and electrophysiological experiments were performed on hippocampal slices of Scn1aH939R/+ mice. We found that the sodium currents recorded in the proband-induced neurons were significantly smaller and slower compared to wild type (WT). The resting membrane potential and spike amplitude were significantly depolarized in the proband-induced neurons. Similar differences in resting membrane potential and spike amplitude were observed in the interneurons of the hippocampus of Scn1aH939R/+ mice. The Scn1aH939R/+ mice showed the characteristic features of a Dravet-like phenotype: increased mortality and both spontaneous and heat-induced seizures. Immunohistochemistry showed a reduction in amount of parvalbumin and vesicular acetylcholine transporter in the hippocampus of Scn1aH939R/+ compared to WT mice. Overall, these results underline hyper-excitability of the hippocampal CA1 circuit of this novel mouse model of Dravet syndrome which, under certain conditions, such as temperature, can trigger seizure activity. This hyper-excitability is due to the altered electrophysiological properties of pyramidal neurons and interneurons which are caused by the dysfunction of the sodium channel bearing the p.H939R substitution. This novel Dravet syndrome model also highlights the reduction in acetylcholine and the contribution of pyramidal cells, in addition to interneurons, to network hyper-excitability.


Assuntos
Região CA1 Hipocampal/patologia , Modelos Animais de Doenças , Epilepsias Mioclônicas/patologia , Fibroblastos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Interneurônios/patologia , Células Piramidais/patologia , Animais , Região CA1 Hipocampal/metabolismo , Eletrofisiologia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interneurônios/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Células Piramidais/metabolismo
9.
J Neurosci ; 27(22): 5967-75, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17537967

RESUMO

The conceptual understanding of hippocampal function has been challenged recently by the finding that new granule cells are born throughout life in the mammalian dentate gyrus (DG). The number of newborn neurons is dynamically regulated by a variety of factors. Kainic acid-induced seizures, a rodent model of human temporal lobe epilepsy, strongly induce the proliferation of DG neurogenic progenitor cells and are also associated with long-term cognitive impairment. We show here that the antiepileptic drug valproic acid (VPA) potently blocked seizure-induced neurogenesis, an effect that appeared to be mainly mediated by inhibiting histone deacetylases (HDAC) and normalizing HDAC-dependent gene expression within the epileptic dentate area. Strikingly, the inhibition of aberrant neurogenesis protected the animals from seizure-induced cognitive impairment in a hippocampus-dependent learning task. We propose that seizure-generated granule cells have the potential to interfere with hippocampal function and contribute to cognitive impairment caused by epileptic activity within the hippocampal circuitry. Furthermore, our data indicate that the effectiveness of VPA as an antiepileptic drug may be partially explained by the HDAC-dependent inhibition of aberrant neurogenesis induced by seizure activity within the adult hippocampus.


Assuntos
Transtornos Cognitivos/patologia , Epigênese Genética/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Convulsões/patologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Epigênese Genética/efeitos dos fármacos , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Convulsões/complicações , Convulsões/prevenção & controle , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
10.
Elife ; 52016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328321

RESUMO

The postnatal neurodevelopmental disorder Rett syndrome, caused by mutations in MECP2, produces a diverse array of symptoms, including loss of language, motor, and social skills and the development of hand stereotypies, anxiety, tremor, ataxia, respiratory dysrhythmias, and seizures. Surprisingly, despite the diversity of these features, we have found that deleting Mecp2 only from GABAergic inhibitory neurons in mice replicates most of this phenotype. Here we show that genetically restoring Mecp2 expression only in GABAergic neurons of male Mecp2 null mice enhanced inhibitory signaling, extended lifespan, and rescued ataxia, apraxia, and social abnormalities but did not rescue tremor or anxiety. Female Mecp2(+/-) mice showed a less dramatic but still substantial rescue. These findings highlight the critical regulatory role of GABAergic neurons in certain behaviors and suggest that modulating the excitatory/inhibitory balance through GABAergic neurons could prove a viable therapeutic option in Rett syndrome.


Assuntos
Neurônios GABAérgicos/fisiologia , Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/biossíntese , Síndrome de Rett/genética , Síndrome de Rett/patologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout
11.
Neuron ; 91(4): 739-747, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27499081

RESUMO

Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Estimulação Encefálica Profunda , Fórnice/fisiologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Inibição Neural/fisiologia , Síndrome de Rett/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Duplicação Gênica/genética , Homeostase/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Mosaicismo , Mutação/fisiologia , Células Piramidais/fisiologia , Síndrome de Rett/genética
12.
Neuron ; 88(4): 651-8, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26590342

RESUMO

Inhibitory neurons are critical for proper brain function, and their dysfunction is implicated in several disorders, including autism, schizophrenia, and Rett syndrome. These neurons are heterogeneous, and it is unclear which subtypes contribute to specific neurological phenotypes. We deleted Mecp2, the mouse homolog of the gene that causes Rett syndrome, from the two most populous subtypes, parvalbumin-positive (PV+) and somatostatin-positive (SOM+) neurons. Loss of MeCP2 partially impairs the affected neuron, allowing us to assess the function of each subtype without profound disruption of neuronal circuitry. We found that mice lacking MeCP2 in either PV+ or SOM+ neurons have distinct, non-overlapping neurological features: mice lacking MeCP2 in PV+ neurons developed motor, sensory, memory, and social deficits, whereas those lacking MeCP2 in SOM+ neurons exhibited seizures and stereotypies. Our findings indicate that PV+ and SOM+ neurons contribute complementary aspects of the Rett phenotype and may have modular roles in regulating specific behaviors.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/metabolismo , Parvalbuminas/metabolismo , Síndrome de Rett/genética , Somatostatina/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Memória , Camundongos , Camundongos Knockout , Atividade Motora/genética , Fenótipo , Convulsões/genética , Sensação/genética , Comportamento Social , Comportamento Estereotipado
13.
Nat Commun ; 6: 6606, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25808087

RESUMO

Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.


Assuntos
Transtornos Cognitivos/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/crescimento & desenvolvimento , Neurogênese/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Epilepsia/induzido quimicamente , Epilepsia/complicações , Epilepsia/fisiopatologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/complicações , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Agonistas Muscarínicos/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais , Neurogênese/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Pilocarpina/toxicidade
14.
Nat Neurosci ; 12(9): 1090-2, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19701197

RESUMO

The transcriptional program that controls adult neurogenesis is unknown. We generated mice with an inducible stem cell-specific deletion of Neurod1, resulting in substantially fewer newborn neurons in the hippocampus and olfactory bulb. Thus, Neurod1 is cell-intrinsically required for the survival and maturation of adult-born neurons.


Assuntos
Células-Tronco Adultas/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Animais , Astrócitos/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA