Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 37(23): 6953-6966, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34060322

RESUMO

Herein, we have successfully developed an integrated strategy to develop antireflective coatings with self-cleaning capabilities based on periodic double-sided photonic γ-AlOOH nanostructures to transmit maximum incident light photons. Interfacial reflections are instinctive and one of the fundamental phenomena occurring at interfaces owing to refractive index mismatch. The eradication of such undesirable light reflection is of significant consideration in many optical devices. A systematic approach was carried out to eradicate surface reflection and enhance optical transmission by tailored γ-AlOOH nanostructures. The γ-AlOOH photonic nanostructures with subwavelength features exhibited a gradient index, which almost eliminated the refractive index mismatch at the interface. Optical transmittance of 97% was achieved in the range of 350-800 nm at normal incidence compared to uncoated glass (89%). A multilayer model approach was adopted to extract the effective refractive index of the coating, which showed a graded index from the top to the bottom surface. Further, to fully comprehend the optics of these nanostructures, the omnidirectional (20-70°) antireflective property has been explored using variable-angle specular reflectance spectroscopy. The hierarchical γ-AlOOH nanostructures exhibited only ∼1.3% reflectance at the lower incident angle in the visible spectra and an average reflectance of ∼7.6% up to an incident angle of 70°. Moreover, the hierarchical nanostructures manifested contact angle (CA) >172° and roll-off angle (RA) <1° with excellent self-cleaning performance. Furthermore, the abrasion resistance of the coating is discussed in detail, which displayed a good resistance against sand erosion. Significantly, the photovoltaic performance of the coated modules exhibited a relative enhancement of ∼17% in efficiency, which is attributed to the efficient coupling of light rays. Thus, the integration of the antireflection (AR) property with self-cleaning ability can provide a cost-effective energy solution for optoelectronic devices, display devices, and thin-film optics.

2.
Langmuir ; 36(23): 6352-6364, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32397715

RESUMO

Interaction of water on heterogeneous nonwetting interfaces has fascinated researchers' attention for wider applications. Herein, we report the evolution of hierarchical micro-/nanostructures on superhydrophobic pseudoboehmite surfaces created from amorphous Al2O3 films and unraveled their temperature-driven wettability and surface energy properties. The influence of hot water immersion temperature on the dissolution-reprecipitation mechanism and the surface geometry of the Al2O3 film have been extensively analyzed, which helped in attaining the optimal Cassie-Baxter state. The evolution of pseudoboehmite films has been structurally characterized using grazing incidence X-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Interfacial surface energy components on the structured superhydrophobic surface exhibited a very low surface energy of ∼4.6 mN/m at room temperature and ultrahigh water contact angle >175°. The interaction between water droplets on the nonwetting surface was comprehended and correlated to the temperature-dependent surface energy properties. The surface energy and wettability of the structured pseudoboehmite superhydrophobic surface exhibited an inverse behavior as a function of temperature. Interestingly, the superhydrophobic surface exhibited "Leidenfrost effect" below the boiling point of water (67 °C), which is further correlated with the intermolecular forces, interfacial water molecules and surface-terminated groups. These high-temperature wetting transition studies could be potentially valuable for solid-liquid systems working at nonambient temperatures, and also this approach can pave new pathways for better understanding of the solid/liquid interfacial interactions on nanoengineered superhydrophobic surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA