Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8006): 93-98, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382650

RESUMO

Defects at the top and bottom interfaces of three-dimensional (3D) perovskite photoabsorbers diminish the performance and operational stability of perovskite solar cells owing to charge recombination, ion migration and electric-field inhomogeneities1-5. Here we demonstrate that long alkyl amine ligands can generate near-phase-pure 2D perovskites at the top and bottom 3D perovskite interfaces and effectively resolve these issues. At the rear-contact side, we find that the alkyl amine ligand strengthens the interactions with the substrate through acid-base reactions with the phosphonic acid group from the organic hole-transporting self-assembled monolayer molecule, thus regulating the 2D perovskite formation. With this, inverted perovskite solar cells with double-side 2D/3D heterojunctions achieved a power conversion efficiency of 25.6% (certified 25.0%), retaining 95% of their initial power conversion efficiency after 1,000 h of 1-sun illumination at 85 °C in air.

2.
Adv Mater ; 36(12): e2211317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37075307

RESUMO

With the rapid rise in device performance of perovskite solar cells (PSCs), overcoming instabilities under outdoor operating conditions has become the most crucial obstacle toward their commercialization. Among stressors such as light, heat, voltage bias, and moisture, the latter is arguably the most critical, as it can decompose metal-halide perovskite (MHP) photoactive absorbers instantly through its hygroscopic components (organic cations and metal halides). In addition, most charge transport layers (CTLs) commonly employed in PSCs also degrade in the presence of water. Furthermore, photovoltaic module fabrication encompasses several steps, such as laser processing, subcell interconnection, and encapsulation, during which the device layers are exposed to the ambient atmosphere. Therefore, as a first step toward long-term stable perovskite photovoltaics, it is vital to engineer device materials toward maximizing moisture resilience, which can be accomplished by passivating the bulk of the MHP film, introducing passivation interlayers at the top contact, exploiting hydrophobic CTLs, and encapsulating finished devices with hydrophobic barrier layers, without jeopardizing device performance. Here, existing strategies for enhancing the performance stability of PSCs are reviewed and pathways toward moisture-resilient commercial perovskite devices are formulated.

3.
J Colloid Interface Sci ; 584: 520-527, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129161

RESUMO

A novel hierarchical solution-processed fractional structured molybdenum oxide (MoO3) catalyst is fabricated from tricarbonyltris (propionitrile) molybdenum and used as the counter electrode of all-solid-state fiber-shaped dye-sensitized solar cells (S-FDSSC). The Tafel plot results and electrical impedance spectroscopy suggest that the use of the fractional structured MoO3 catalyst enhances the efficiency of the reduction of I3- to 3I- at the counter electrode/electrolyte interface. Because of the improvements of the short-current circuit and fill factor, the power conversion efficiency of the MoO3-modified S-FDSSC improves by 60% compared with that of the reference S-FDSSC. In addition, because of the robust fractional structure of MoO3, the MoO3-modified S-FDSSC maintains 90% and 95% of efficiency after 350-fold bending and the incident light angle dependency test, respectively. At 65% humidity and at 65 °C, the power conversion efficiency of the MoO3-modified device decreases by <20% after 350 h of storage, while that of the reference device drops by more than 70%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA