Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genes Cells ; 29(5): 380-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454557

RESUMO

Left-right (LR) asymmetry is crucial for animal development, particularly in Drosophila where LR-asymmetric morphogenesis of organs hinges on cellular-level chirality, termed cell chirality. In this species, two class I myosins, Myosin1D (Myo1D), and Myosin1C (Myo1C), respectively determine dextral (wild type) and sinistral (mirror image) cell chirality. Previous studies demonstrated Myo1D's ability to propel F-actin in leftward circles during in vitro gliding assays, suggesting its mechanochemical role in defining dextral chirality. Conversely, Myo1C propels F-actin without exhibiting LR-directional preference in this assay, suggesting at other properties governing sinistral chirality. Given the interaction of Myo1D and Myo1C with the membrane, we hypothesized that differences in their membrane behaviors might be critical in dictating their dextral or sinistral activities. In this study, employing single-molecule imaging analyses, we investigated the dynamic behaviors of Myo1D and Myo1C on the plasma membrane. Our findings revealed that Myo1C exhibits a significantly greater proportion of slow-diffusing population compared to Myo1D. Importantly, this characteristic was contingent upon both head and tail domains of Myo1C. The distinct diffusion patterns of Myo1D and Myo1C did not exert mutual influence on each other. This divergence in membrane diffusion between Myo1D and Myo1C may be crucial for dictating cell and organ chirality.


Assuntos
Membrana Celular , Proteínas de Drosophila , Macrófagos , Miosina Tipo I , Animais , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Macrófagos/metabolismo , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Imagem Individual de Molécula , Drosophila/metabolismo
2.
J Endocr Soc ; 8(4): bvae030, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38410786

RESUMO

Background: The remote performance of thyroid function blood tests is complicated because it requires blood collection. Objective: To compare TSH and free thyroxine (FT4) levels between capillary and venous blood and assess the adequacy of measuring each value in capillary blood. Methods: This prospective intervention study was conducted at Ito Hospital and was based on the clinical research method. The participants were 5 healthy female volunteers and 50 patients (41 females and 9 males) between the ages of 23 and 81 years. To measure TSH and FT4 levels in capillary and venous blood, a digital immunoassay (d-IA) method capable of measuring trace samples was used. Chemiluminescence measurements were used as controls. Values obtained for each assay system were compared using Spearman's correlation analysis. Capillary blood was collected using an autologous device (TAP II; not approved in Japan). Results: Capillary plasma volume obtained using TAP II was 125 µL or more in 26 cases, 25 µL to 124 µL in 24 cases, and less than 25 µL in 5 cases. Strong correlations were noted in the TSH and FT4 levels between capillary and venous blood, with correlation coefficients of rs = 0.99 and rs = 0.97, respectively. Conclusion: Capillary TSH and FT4 levels strongly correlate with venous blood values. Trace samples can be used in high-precision d-IA methods. These results may promote telemedicine in assessing thyroid function.

3.
Front Bioeng Biotechnol ; 11: 1227357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811377

RESUMO

Regular checkups for thyroid-stimulating hormone (TSH) levels are essential for the diagnosis of thyroid disease. The enzyme-linked immunosorbent assay (ELISA) technique is a standard method for detecting TSH in the serum or plasma of hospitalized patients. A recently developed next-generation ELISA, the digital immunoassay (d-IA), has facilitated detection of molecules with ultra-high-sensitivity. In this study, we developed a TSH assay system using the d-IA platform. By utilizing the ultrasensitivity of d-IA, we were able to use a sample volume of as little as 5 µL for each assay (the dead volume was 5 µL). The limits of blank, detection, and quantification (i.e., functional sensitivity), were 0.000346, 0.001953, and 0.002280 µIU/mL, respectively, and the precision of the total coefficient of variation did not exceed 10%. The correlation between serum and plasma levels indicated good agreement. Thus, our system successfully measured TSH using d-IA with a small sample volume and equal functional sensitivity to the current third generation like ARCHITECT TSH assay, which has a functional sensitivity of 0.0038 µIU/mL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA