Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 41(2): e105531, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34904718

RESUMO

Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.


Assuntos
Deficiências do Desenvolvimento/genética , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Proteostase , Adolescente , Adulto , Animais , Axônios/metabolismo , Axônios/patologia , Adesão Celular , Células Cultivadas , Criança , Citoesqueleto/metabolismo , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Crescimento Neuronal , Plasticidade Neuronal , Linhagem , Isomerases de Dissulfetos de Proteínas/metabolismo , Peixe-Zebra
2.
Ann Neurol ; 91(5): 716-729, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35178738

RESUMO

OBJECTIVE: The objective of this study is to develop a novel method for monitoring the integrity of motor neurons in vivo by quantifying net retrograde axonal transport. METHODS: The method uses single photon emission computed tomography to quantify retrograde transport to spinal cord of tetanus toxin fragment C (125 I-TTC) following intramuscular injection. We characterized the transport profiles in 3 transgenic mouse models carrying amyotrophic lateral sclerosis (ALS)-associated genes, aging mice, and SOD1G93A transgenic mice following CRISPR/Cas9 gene editing. Lastly, we studied the effect of prior immunization of tetanus toxoid on the transport profile of TTC. RESULTS: This technique defines a quantitative profile of net retrograde axonal transport of TTC in living mice. The profile is distinctly abnormal in transgenic SOD1G93A mice as young as 65 days (presymptomatic) and worsens with disease progression. Moreover, this method detects a distinct therapeutic benefit of gene editing in transgenic SOD1G93A mice well before other clinical parameters (eg, grip strength) show improvement. Symptomatic transgenic PFN1C71G/C71G ALS mice display gross reductions in net retrograde axonal transport, which is also disturbed in asymptomatic mice harboring a human C9ORF72 transgene with an expanded GGGGCC repeat motif. In wild-type mice, net retrograde axonal transport declines with aging. Lastly, prior immunization with tetanus toxoid does not preclude use of this assay. INTERPRETATION: This assay of net retrograde axonal transport has broad potential clinical applications and should be particularly valuable as a physiological biomarker that permits early detection of benefit from potential therapies for motor neuron diseases. ANN NEUROL 2022;91:716-729.


Assuntos
Esclerose Lateral Amiotrófica , Transporte Axonal , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Animais , Transporte Axonal/genética , Biomarcadores , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Profilinas , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Toxoide Tetânico
3.
Nat Commun ; 12(1): 6241, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716321

RESUMO

Precise control of gene expression during differentiation relies on the interplay of chromatin and nuclear structure. Despite an established contribution of nuclear membrane proteins to developmental gene regulation, little is known regarding the role of inner nuclear proteins. Here we demonstrate that loss of the nuclear scaffolding protein Matrin-3 (Matr3) in erythroid cells leads to morphological and gene expression changes characteristic of accelerated maturation, as well as broad alterations in chromatin organization similar to those accompanying differentiation. Matr3 protein interacts with CTCF and the cohesin complex, and its loss perturbs their occupancy at a subset of sites. Destabilization of CTCF and cohesin binding correlates with altered transcription and accelerated differentiation. This association is conserved in embryonic stem cells. Our findings indicate Matr3 negatively affects cell fate transitions and demonstrate that a critical inner nuclear protein impacts occupancy of architectural factors, culminating in broad effects on chromatin organization and cell differentiation.


Assuntos
Cromatina/química , Leucemia Eritroblástica Aguda/patologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/fisiologia , Células Eritroides/patologia , Leucemia Eritroblástica Aguda/metabolismo , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Ligação a RNA/genética , Coesinas
4.
Ann Clin Transl Neurol ; 6(4): 642-654, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31019989

RESUMO

OBJECTIVE: Dysferlin is a large transmembrane protein that functions in critical processes of membrane repair and vesicle fusion. Dysferlin-deficiency due to mutations in the dysferlin gene leads to muscular dystrophy (Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD2B), distal myopathy with anterior tibial onset (DMAT)), typically with early adult onset. At least 416 pathogenic dysferlin mutations are known, but for approximately 17% of patients, one or both of their pathogenic variants remain undefined following standard exon sequencing methods that interrogate exons and nearby flanking intronic regions but not the majority of intronic regions. METHODS: We sequenced RNA from myogenic cells to identify a novel dysferlin pathogenic variant in two affected siblings that previously had only one disease-causing variant identified. We designed antisense oligonucleotides (AONs) to bypass the effects of this mutation on RNA splicing. RESULTS: We identified a new pathogenic point mutation deep within dysferlin intron 50i. This intronic variant causes aberrant mRNA splicing and inclusion of an additional pseudoexon (PE, we term PE50.1) within the mature dysferlin mRNA. PE50.1 inclusion alters the protein sequence, causing premature translation termination. We identified this mutation in 23 dysferlinopathy patients (seventeen families), revealing it to be one of the more prevalent dysferlin mutations. We used AON-mediated exon skipping to correct the aberrant PE50.1 splicing events in vitro, which increased normal mRNA production and significantly restored dysferlin protein expression. INTERPRETATION: Deep intronic mutations can be a common underlying cause of dysferlinopathy, and importantly, could be treatable with AON-based exon-skipping strategies.


Assuntos
Disferlina/genética , Íntrons/genética , Distrofia Muscular do Cíngulo dos Membros/etiologia , Mutação/genética , Miopatias Distais/genética , Humanos , Íntrons/efeitos dos fármacos , Proteínas de Membrana/deficiência , Atrofia Muscular/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/efeitos dos fármacos
5.
Neurobiol Aging ; 36(4): 1764.e9-1764.e18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681989

RESUMO

The frequency of amyotrophic lateral sclerosis (ALS) mutations has been extensively investigated in several populations; however, a systematic analysis in Turkish cases has not been reported so far. In this study, we screened 477 ALS patients for mutations, including 116 familial ALS patients from 82 families and 361 sporadic ALS (sALS) cases. Patients were genotyped for C9orf72 (18.3%), SOD1 (12.2%), FUS (5%), TARDBP (3.7%), and UBQLN2 (2.4%) gene mutations, which together account for approximately 40% of familial ALS in Turkey. No SOD1 mutations were detected in sALS patients; however, C9orf72 (3.1%) and UBQLN2 (0.6%) explained 3.7% of sALS in the population. Exome sequencing revealed mutations in OPTN, SPG11, DJ1, PLEKHG5, SYNE1, TRPM7, and SQSTM1 genes, many of them novel. The spectrum of mutations reflect both the distinct genetic background and the heterogeneous nature of the Turkish ALS population.


Assuntos
Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Mutação/genética , Proteínas/genética , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Proteínas Relacionadas à Autofagia , Proteína C9orf72 , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/genética , Exoma/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Proteína Desglicase DJ-1 , Proteínas Serina-Treonina Quinases/genética , Proteína Sequestossoma-1 , Superóxido Dismutase-1 , Canais de Cátion TRPM/genética , Fator de Transcrição TFIIIA/genética , Turquia , Ubiquitinas/genética , Adulto Jovem
6.
Ann Clin Transl Neurol ; 1(9): 703-20, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25493284

RESUMO

OBJECTIVE: Mutations in dysferlin (DYSF), a Ca(2+)-sensitive ferlin family protein important for membrane repair, vesicle trafficking, and T-tubule function, cause Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, and distal myopathy. More than 330 pathogenic DYSF mutations have been identified within exons or near exon-intron junctions. In ~17% of patients who lack normal DYSF, only a single disease-causing mutation has been identified. We studied one family with one known mutant allele to identify both the second underlying genetic defect and potential therapeutic approaches. METHODS: We sequenced the full DYSF cDNA and investigated antisense oligonucleotides (AONs) as a tool to modify splicing of the mRNA transcripts in order to process out mutant sequences. RESULTS: We identified a novel pseudoexon between exons 44 and 45, (pseudoexon 44.1, PE44.1), which inserts an additional 177 nucleotides into the mRNA and 59 amino acids within the conserved C2F domain of the DYSF protein. Two unrelated dysferlinopathy patients were also found to carry this mutation. Using AONs targeting PE44.1, we blocked the abnormal splicing event, yielding normal, full-length DYSF mRNA, and increased DYSF protein expression. INTERPRETATION: This is the first report of a deep intronic mutation in DYSF that alters mRNA splicing to include a mutant peptide fragment within a key DYSF domain. We report that AON-mediated exon-skipping restores production of normal, full-length DYSF in patients' cells in vitro, offering hope that this approach will be therapeutic in this genetic context, and providing a foundation for AON therapeutics targeting other pathogenic DYSF alleles.

7.
PLoS One ; 8(1): e53042, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23301017

RESUMO

Schizophrenia is one of the most common and complex neuropsychiatric disorders, which is contributed both by genetic and environmental exposures. Recently, it is shown that NRG1-mediated ErbB4 signalling regulates many important cellular and molecular processes such as cellular growth, differentiation and death, particularly in myelin-producing cells, glia and neurons. Recent association studies have revealed genomic regions of NRG1 and ERBB4, which are significantly associated with risk of developing schizophrenia; however, inconsistencies exist in terms of validation of findings between distinct populations. In this study, we aim to validate the previously identified regions and to discover novel haplotypes of NRG1 and ERBB4 using logistic regression models and Haploview analyses in three independent datasets from GWAS conducted on European subjects, namely, CATIE, GAIN and nonGAIN. We identified a significant 6-kb block in ERBB4 between chromosome locations 212,156,823 and 212,162,848 in CATIE and GAIN datasets (p = 0.0206 and 0.0095, respectively). In NRG1, a significant 25-kb block, between 32,291,552 and 32,317,192, was associated with risk of schizophrenia in all CATIE, GAIN, and nonGAIN datasets (p = 0.0005, 0.0589, and 0.0143, respectively). Fine mapping and FastSNP analysis of genetic variation located within significantly associated regions proved the presence of binding sites for several transcription factors such as SRY, SOX5, CEPB, and ETS1. In this study, we have discovered and validated haplotypes of ERBB4 and NRG1 in three independent European populations. These findings suggest that these haplotypes play an important role in the development of schizophrenia by affecting transcription factor binding affinity.


Assuntos
Receptores ErbB/genética , Estudo de Associação Genômica Ampla , Neuregulina-1/genética , Esquizofrenia/genética , Alelos , Sítios de Ligação , Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Éxons , Feminino , Variação Genética , Genótipo , Haplótipos , Humanos , Masculino , Receptor ErbB-4 , Transdução de Sinais
8.
PLoS One ; 8(8): e72381, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991104

RESUMO

The genome-wide presence of copy number variations (CNVs), which was shown to affect the expression and function of genes, has been recently suggested to confer risk for various human disorders, including Amyotrophic Lateral Sclerosis (ALS). We have performed a genome-wide CNV analysis using PennCNV tool and 733K GWAS data of 117 Turkish ALS patients and 109 matched healthy controls. Case-control association analyses have implicated the presence of both common (>5%) and rare (<5%) CNVs in the Turkish population. In the framework of this study, we identified several common and rare loci that may have an impact on ALS pathogenesis. None of the CNVs associated has been implicated in ALS before, but some have been reported in different types of cancers and autism. The most significant associations were shown for 41 kb and 15 kb intergenic heterozygous deletions (Chr11: 50,545,009-50,586,426 and Chr19: 20,860,930-20,875,787) both contributing to increased risk for ALS. CNVs in coding regions of the MAP4K3, HLA-B, EPHA3 and DPYD genes were detected however, after validation by Log R Ratio (LRR) values and TaqMan CNV genotyping, only EPHA3 deletion remained as a potential protective factor for ALS (p = 0.0065024). Based on the knowledge that EPHA4 has been previously shown to rescue SOD1 transgenic mice from ALS phenotype and prolongs survival, EPHA3 may be a promising candidate for therepuetic interventions.


Assuntos
Esclerose Lateral Amiotrófica/genética , Deleção de Genes , Dosagem de Genes , Genoma Humano , Receptores Proteína Tirosina Quinases/genética , Estudos de Casos e Controles , Humanos , Reação em Cadeia da Polimerase , Receptor EphA3 , Turquia
9.
PLoS One ; 7(8): e42956, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916186

RESUMO

Expansions of the polyglutamine (polyQ) domain (≥ 34) in Ataxin-2 (ATXN2) are the primary cause of spinocerebellar ataxia type 2 (SCA2). Recent studies reported that intermediate-length (27-33) expansions increase the risk of Amyotrophic Lateral Sclerosis (ALS) in 1-4% of cases in diverse populations. This study investigates the Turkish population with respect to ALS risk, genotyping 158 sporadic, 78 familial patients and 420 neurologically healthy controls. We re-assessed the effect of ATXN2 expansions and extended the analysis for the first time to cover the ATXN2 locus with 18 Single Nucleotide Polymorphisms (SNPs) and their haplotypes. In accordance with other studies, our results confirmed that 31-32 polyQ repeats in the ATXN2 gene are associated with risk of developing ALS in 1.7% of the Turkish ALS cohort (p=0.0172). Additionally, a significant association of a 136 kb haplotype block across the ATXN2 and SH2B3 genes was found in 19.4% of a subset of our ALS cohort and in 10.1% of the controls (p=0.0057, OR: 2.23). ATXN2 and SH2B3 encode proteins that both interact with growth receptor tyrosine kinases. Our novel observations suggest that genotyping of SNPs at this locus may be useful for the study of ALS risk in a high percentage of individuals and that ATXN2 and SH2B3 variants may interact in modulating the disease pathway.


Assuntos
Esclerose Lateral Amiotrófica/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Ataxinas , Estudos de Casos e Controles , Estudos de Coortes , Haplótipos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA