Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cereb Cortex ; 33(9): 5704-5716, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36520483

RESUMO

Quantitative magnetic resonance imaging (qMRI) allows extraction of reproducible and robust parameter maps. However, the connection to underlying biological substrates remains murky, especially in the complex, densely packed cortex. We investigated associations in human neocortex between qMRI parameters and neocortical cell types by comparing the spatial distribution of the qMRI parameters longitudinal relaxation rate (${R_{1}}$), effective transverse relaxation rate (${R_{2}}^{\ast }$), and magnetization transfer saturation (MTsat) to gene expression from the Allen Human Brain Atlas, then combining this with lists of genes enriched in specific cell types found in the human brain. As qMRI parameters are magnetic field strength-dependent, the analysis was performed on MRI data at 3T and 7T. All qMRI parameters significantly covaried with genes enriched in GABA- and glutamatergic neurons, i.e. they were associated with cytoarchitecture. The qMRI parameters also significantly covaried with the distribution of genes enriched in astrocytes (${R_{2}}^{\ast }$ at 3T, ${R_{1}}$ at 7T), endothelial cells (${R_{1}}$ and MTsat at 3T), microglia (${R_{1}}$ and MTsat at 3T, ${R_{1}}$ at 7T), and oligodendrocytes and oligodendrocyte precursor cells (${R_{1}}$ at 7T). These results advance the potential use of qMRI parameters as biomarkers for specific cell types.


Assuntos
Neocórtex , Humanos , Células Endoteliais , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos
2.
Magn Reson Med ; 88(2): 787-801, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35405027

RESUMO

PURPOSE: High-resolution quantitative multi-parameter mapping shows promise for non-invasively characterizing human brain microstructure but is limited by physiological artifacts. We implemented corrections for rigid head movement and respiration-related B0-fluctuations and evaluated them in healthy volunteers and dementia patients. METHODS: Camera-based optical prospective motion correction (PMC) and FID navigator correction were implemented in a gradient and RF-spoiled multi-echo 3D gradient echo sequence for mapping proton density (PD), longitudinal relaxation rate (R1) and effective transverse relaxation rate (R2*). We studied their effectiveness separately and in concert in young volunteers and then evaluated the navigator correction (NAVcor) with PMC in a group of elderly volunteers and dementia patients. We used spatial homogeneity within white matter (WM) and gray matter (GM) and scan-rescan measures as quality metrics. RESULTS: NAVcor and PMC reduced artifacts and improved the homogeneity and reproducibility of parameter maps. In elderly participants, NAVcor improved scan-rescan reproducibility of parameter maps (coefficient of variation decreased by 14.7% and 11.9% within WM and GM respectively). Spurious inhomogeneities within WM were reduced more in the elderly than in the young cohort (by 9% vs. 2%). PMC increased regional GM/WM contrast and was especially important in the elderly cohort, which moved twice as much as the young cohort. We did not find a significant interaction between the two corrections. CONCLUSION: Navigator correction and PMC significantly improved the quality of PD, R1, and R2* maps, particularly in less compliant elderly volunteers and dementia patients.


Assuntos
Demência , Imageamento por Ressonância Magnética , Idoso , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Movimento (Física) , Estudos Prospectivos , Reprodutibilidade dos Testes
3.
Hum Brain Mapp ; 42(15): 4996-5009, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34272784

RESUMO

Ultra-high field MRI across the depth of the cortex has the potential to provide anatomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer-selective vulnerability. Here we compare multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 µm whole brain acquisition to (a) layer-specific cell measures from the von Economo histology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer-specific cell number and layer-specific gene expression. R1- and R2*-weighted connectivity strength of cortico-striatal and intra-hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer-specific relationships demonstrated are at least in part related to the high cross-correlations of von Economo atlas cell counts and layer-specific gene expression across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease.


Assuntos
Córtex Cerebral , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Expressão Gênica/fisiologia , Bainha de Mielina , Rede Nervosa , Substância Branca , Adulto , Atlas como Assunto , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Adulto Jovem
4.
STAR Protoc ; 3(1): 101141, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35141565

RESUMO

Lysolecithin injections into the white matter tracts of the central nervous system are a valuable tool to study remyelination, but evaluating the resulting demyelinating lesion size is challenging. Here, we present a protocol to consistently measure the volume of demyelination and remyelination in mice following brain lysolecithin injections. We describe serial sectioning of the lesion, followed by the evaluation of the demyelinated area in two-dimensional images. We then detail the computation of the volume using our own automated iPython script. For complete details on the use and execution of this profile, please refer to Bosch-Queralt et al. (2021).


Assuntos
Doenças Desmielinizantes , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Doenças Desmielinizantes/induzido quimicamente , Lisofosfatidilcolinas , Camundongos , Microscopia de Fluorescência , Bainha de Mielina/patologia , Substância Branca/patologia
5.
Nat Metab ; 3(2): 211-227, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619376

RESUMO

Proregenerative responses are required for the restoration of nervous-system functionality in demyelinating diseases such as multiple sclerosis (MS). Yet, the limiting factors responsible for poor CNS repair are only partially understood. Here, we test the impact of a Western diet (WD) on phagocyte function in a mouse model of demyelinating injury that requires microglial innate immune function for a regenerative response to occur. We find that WD feeding triggers an ageing-related, dysfunctional metabolic response that is associated with impaired myelin-debris clearance in microglia, thereby impairing lesion recovery after demyelination. Mechanistically, we detect enhanced transforming growth factor beta (TGFß) signalling, which suppresses the activation of the liver X receptor (LXR)-regulated genes involved in cholesterol efflux, thereby inhibiting phagocytic clearance of myelin and cholesterol. Blocking TGFß or promoting triggering receptor expressed on myeloid cells 2 (TREM2) activity restores microglia responsiveness and myelin-debris clearance after demyelinating injury. Thus, we have identified a druggable microglial immune checkpoint mechanism regulating the microglial response to injury that promotes remyelination.


Assuntos
Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Dieta , Imunidade Inata/imunologia , Fator de Crescimento Transformador beta/metabolismo , Envelhecimento/metabolismo , Animais , Colesterol/metabolismo , Dieta Ocidental , Receptores X do Fígado , Lisofosfatidilcolinas/farmacologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fagócitos/metabolismo , Receptores Imunológicos/metabolismo
7.
Appl Spectrosc ; 69(8): 939-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26163374

RESUMO

Drop-coating deposition Raman (DCDR) spectroscopy is based on the measurement of a sample that has been preconcentrated by being dried on a special hydrophobic plate. In addition to its higher sensitivity, the advantage of DCDR over the conventional Raman spectroscopy is the small sample volume needed, the lack of interference from solvents, and the capability of segregating any impurities present and separating components in more complex samples. In this study, DCDR spectroscopy was employed to investigate the complex of the cationic copper(II) 5,10,15,20-tetrakis(1-methyl-4-pyridyl) porphyrin (CuTMPyP) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes. Drop-coating deposition Raman spectra were treated using factor analysis (FA), which led to the following conclusions: (i) the distribution of CuTMPyP in the complex is not homogenous, (ii) the DCDR technique segregates complexed and noncomplexed parts of the sample, (iii) the spectral changes caused by the drying process and by the interaction of CuTMPyP with the DPPC liposomes can be distinguished, and (iv) the porphyrin molecules interacting with DPPC affect both the order-disorder properties of the lipid chains and the lipid head.


Assuntos
Lipossomos/química , Lipossomos/metabolismo , Membranas Artificiais , Porfirinas/química , Porfirinas/metabolismo , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA