Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chembiochem ; 25(8): e202300862, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38369609

RESUMO

A Morita-Baylis-Hillman Adduct (MBHA) derivative bearing a triphenylamine moiety was found to react with human serum albumin (HSA) shifting its emission from the blue to the green-yellow thus leading to green fluorescent albumin (GFA) derivatives and enlarging the platform of probes for aggregation-induced fluorescent-based detection techniques. A possible interaction of MBHA derivative 7 with a lipophilic pocket within the HSA structure was suggested by docking studies. DLS experiments showed that the reaction with HSA induce a conformational change of the protein contributing to the aggregation process of GFA derivatives. The results of investigations on the biological properties suggested that GFA retained the ability of binding drug molecules such as warfarin and diazepam. Finally, cytotoxicity evaluation studies suggested that, although the MBHA derivative 7 at 0.1 µg/mL affected the percentage of cell viability in comparison to the negative control, it cannot be considered cytotoxic, whereas at all the other concentrations≥0.5 µg/mL resulted cytotoxic at different extent.


Assuntos
Albumina Sérica Humana , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/metabolismo , Albumina Sérica Humana/química , Espectrometria de Fluorescência
2.
Bioorg Med Chem ; 112: 117872, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39153378

RESUMO

Riluzole, the first clinically approved treatment for amyotrophic lateral sclerosis (ALS), represents a successful example of a drug endowed with a multimodal mechanism of action. In recent years, different series of riluzole-based compounds have been reported, including several agents acting as Multi-Target-Directed Ligands (MTLDs) endowed with neuroprotective effects. Aiming at identical twin structures inspired by riluzole (2a-c), a synthetic procedure was planned, but the reactivity of the system took a different path, leading to the serendipitous isolation of benzo[b][1,4]thiazepines 3a-c and expanded intermediates N-cyano-benzo[b][1,4]thiazepines 4a-c, which were fully characterized. The newly obtained structures 3a-c, bearing riluzole key elements, were initially tested in an in vitro ischemia/reperfusion injury protocol, simulating the cerebral stroke. Results identified compound 3b as the most effective in reverting the injury caused by an ischemia-like condition, and its activity was comparable, or even higher than that of riluzole, exhibiting a concentration-dependent neuroprotective effect. Moreover, derivative 3b completely reverted the release of Lactate Dehydrogenase (LDH), lowering the values to those of the control slices. Based on its very promising pharmacological properties, compound 3b was then selected to assess its effects on voltage-dependent Na+ and K+ currents. The results indicated that derivative 3b induced a multifaceted inhibitory effect on voltage-gated currents in SH-SY5Y differentiated neurons, suggesting its possible applications in epilepsy and stroke management, other than ALS. Accordingly, brain penetration was also measured for 3b, as it represents an elegant example of a MTDL and opens the way to further ex-vivo and/or in-vivo characterization.


Assuntos
Fármacos Neuroprotetores , Riluzol , Animais , Humanos , Relação Dose-Resposta a Droga , Ligantes , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Riluzol/farmacologia , Riluzol/síntese química , Riluzol/química , Relação Estrutura-Atividade , Tiazepinas/síntese química , Tiazepinas/química , Tiazepinas/farmacologia
3.
Drug Dev Res ; 85(1): e22158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349262

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive malignancies with a high recurrence rate and poor prognosis. Theranostic, combining therapeutic and diagnostic approaches, arises as a successful strategy to improve patient outcomes through personalized medicine. Src is a non-receptor tyrosine kinase (nRTK) whose involvement in GBM has been extensively demonstrated. Our previous research highlighted the effectiveness of the pyrazolo[3,4-d]pyrimidine SI306 and its more soluble prodrug CMP1 as Src inhibitors both in in vitro and in vivo GBM models. In this scenario, we decided to develop a theranostic prodrug of SI306, ProSI-DOTA(68 Ga) 1, which was designed to target GBM cells after hydrolysis and follow-up on the disease's progression and improve the therapy's outcome. First, the corresponding nonradioactive prodrug 2 was tested to evaluate its ADME profile and biological activity. It showed good metabolic stability, no inhibition of CYP3A4, suboptimal aqueous solubility, and slight gastrointestinal and blood-brain barrier passive permeability. Compound 2 exhibited a drastic reduction of cell vitality after 72 h on two different GBM cell lines (GL261 and U87MG). Then, 2 was subjected to complexation with the radionuclide Gallium-68 to give ProSI-DOTA(68 Ga) 1. The cellular uptake of 1 was evaluated on GBM cells, highlighting a slight but significant time-dependent uptake. The data obtained from our preliminary studies reflect the physiochemical properties of 1. The use of an alternative route of administration, such as the intranasal route, could overcome the physiochemical limitations and enhance the pharmacokinetic properties of 1, paving the way for its future development.


Assuntos
Glioblastoma , Pró-Fármacos , Humanos , Medicina de Precisão , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Barreira Hematoencefálica , Linhagem Celular , Pró-Fármacos/farmacologia
4.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062831

RESUMO

Globalization and climate change are both contributing to an increase in the number of potentially invasive algae in coastal areas. In terms of biodiversity and financial losses, the invasiveness of algae has become a significant issue in Orbetello Lagoon. Indeed, studies from the Tuscany Regional Agency for Environmental Protection show that the reduction in dissolved oxygen caused by algal diffusion is detrimental to fisheries and biodiversity. Considering that wakame and numerous other potentially invasive seaweeds are consumed as food in Asia, we assess the nutritional and nutraceutical qualities of two potentially invasive seaweeds: Valonia aegagrophila and Chaetomorpha linum. We found that both algae are a valuable source of proteins and essential amino acids. Even if the fat content accounts for less than 2% of the dried weight, its quality is high, due to the presence of unsaturated fatty acids. Both algae are rich in antioxidants pigments and polyphenols, which can be exploited as nutraceuticals. Most importantly, human gastrointestinal digestion increased the quantity of polyphenols and originated secondary metabolites with ACE inhibitory activity. Taken together, our data strongly promote the use of Valonia aegagrophila and Chaetomorpha linum as functional foods, with possible application in the treatment of hypertension and cardiovascular diseases.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Alimento Funcional , Alga Marinha , Antioxidantes/farmacologia , Antioxidantes/química , Alga Marinha/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Humanos , Nutrientes/análise , Suplementos Nutricionais , Polifenóis/análise , Polifenóis/farmacologia , Polifenóis/química , Valor Nutritivo
5.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397115

RESUMO

Zika virus (ZIKV) is a positive-sense single-stranded virus member of the Flaviviridae family. Among other arboviruses, ZIKV can cause neurological disorders such as Guillain Barré syndrome, and it can have congenital neurological manifestations and affect fertility. ZIKV nonstructural protein 5 (NS5) is essential for viral replication and limiting host immune detection. Herein, we performed virtual screening to identify novel small-molecule inhibitors of the ZIKV NS5 methyltransferase (MTase) domain. Compounds were tested against the MTases of both ZIKV and DENV, demonstrating good inhibitory activities against ZIKV MTase. Extensive molecular dynamic studies conducted on the series led us to identify other derivatives with improved activity against the MTase and limiting ZIKV infection with an increased selectivity index. Preliminary pharmacokinetic parameters have been determined, revealing excellent stability over time. Preliminary in vivo toxicity studies demonstrated that the hit compound 17 is well tolerated after acute administration. Our results provide the basis for further optimization studies on novel non-nucleoside MTase inhibitors.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Infecção por Zika virus/tratamento farmacológico , Modelos Moleculares , Antivirais/química , Proteínas não Estruturais Virais/metabolismo
6.
Molecules ; 29(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611732

RESUMO

The use of privileged scaffolds as a starting point for the construction of libraries of bioactive compounds is a widely used strategy in drug discovery and development. Scaffold decoration, morphing and hopping are additional techniques that enable the modification of the chosen privileged framework and better explore the chemical space around it. In this study, two series of highly functionalized pyrimidine and pyridine derivatives were synthesized using a scaffold morphing approach consisting of triazine compounds obtained previously as antiviral agents. Newly synthesized azines were evaluated against lymphoma, hepatocarcinoma, and colon epithelial carcinoma cells, showing in five cases acceptable to good anticancer activity associated with low cytotoxicity on healthy fibroblasts. Finally, ADME in vitro studies were conducted on the best derivatives of the two series showing good passive permeability and resistance to metabolic degradation.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacologia , Antivirais/farmacologia , Compostos Azo
7.
Pharmacol Res ; 195: 106858, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473878

RESUMO

Aberrant activation of Hedgehog (HH) signaling in cancer is the result of genetic alterations of upstream pathway components (canonical) or other oncogenic mechanisms (noncanonical), that ultimately concur to activate the zinc-finger transcription factors GLI1 and GLI2. Therefore, inhibition of GLI activity is a good therapeutic option to suppress both canonical and noncanonical activation of the HH pathway. However, only a few GLI inhibitors are available, and none of them have the profile required for clinical development due to poor metabolic stability and aqueous solubility, and high hydrophobicity. Two promising quinoline inhibitors of GLI were selected by virtual screening and subjected to hit-to-lead optimization, thus leading to the identification of the 4-methoxy-8-hydroxyquinoline derivative JC19. This molecule impaired GLI1 and GLI2 activities in several cellular models interfering with the binding of GLI1 and GLI2 to DNA. JC19 suppressed cancer cell proliferation by enhancing apoptosis, inducing a strong anti-tumor response in several cancer cell lines in vitro. Specificity towards GLI1 and GLI2 was demonstrated by lower activity of JC19 in GLI1- or GLI2-depleted cancer cells. JC19 showed excellent metabolic stability and high passive permeability. Notably, JC19 inhibited GLI1-dependent melanoma xenograft growth in vivo, with no evidence of toxic effects in mice. These results highlight the potential of JC19 as a novel anti-cancer agent targeting GLI1 and GLI2.


Assuntos
Neoplasias , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Animais , Humanos , Camundongos , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Proteína Gli2 com Dedos de Zinco/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia
8.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298177

RESUMO

In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.


Assuntos
Adjuvantes Imunológicos , Vacinas , Humanos , Idoso , Adjuvantes Imunológicos/farmacologia , Fatores Imunológicos , Adjuvantes Farmacêuticos , Antivirais/farmacologia
9.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768618

RESUMO

The progression of drugs into clinical phases requires proper toxicity assessment in animals and the correct identification of possible metabolites. Accordingly, different animal models are used to preliminarily evaluate toxicity and biotransformations. Rodents are the most common models used to preliminarily evaluate the safety of drugs; however, their use is subject to ethical consideration and elevated costs, and strictly regulated by national legislations. Herein, we developed a novel, cheap and convenient toxicity model using Tenebrio molitor coleoptera (TMC). A panel of 15 drugs-including antivirals and antibacterials-with different therapeutic applications was administered to TMC and the LD50 was determined. The values are comparable with those already determined in mice and rats. In addition, a TMC model was used to determine the presence of the main metabolites and in vivo pharmacokinetics (PK), and results were compared with those available from in vitro assays and the literature. Taken together, our results demonstrate that TMC can be used as a novel and convenient preliminary toxicity model to preliminarily evaluate the safety of experimental compounds and the formation of main metabolites, and to reduce the costs and number of rodents, according to 3R principles.


Assuntos
Besouros , Tenebrio , Animais , Camundongos , Ratos , Tenebrio/metabolismo
10.
Mol Divers ; 26(6): 3399-3409, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35143033

RESUMO

The rise of antimicrobial-resistant phenotypes and the spread of the global pandemic of COVID-19 are worsening the outcomes of hospitalized patients for invasive fungal infections. Among them, candidiases are seriously worrying, especially since the currently available drug armamentarium is extremely limited. We recently reported a new class of macrocyclic amidinoureas bearing a guanidino tail as promising antifungal agents. Herein, we present the design and synthesis of a focused library of seven derivatives of macrocyclic amidinoureas, bearing a second phenyl ring fused with the core. Biological activity evaluation shows an interesting antifungal profile for some compounds, resulting to be active on a large panel of Candida spp. and C. neoformans. PAMPA experiments for representative compounds of the series revealed a low passive diffusion, suggesting a membrane-based mechanism of action or the involvement of active transport systems. Also, compounds were found not toxic at high concentrations, as assessed through MTT assays.


Assuntos
COVID-19 , Cryptococcus neoformans , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Candida
11.
Eur J Med Chem ; 280: 116929, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39406114

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver solid tumor and the second leading cause of cancer-related deaths worldwide. Although new treatment options have been recently approved, the development of tumor resistance and the poor prognosis for advanced HCC make the current standard of care unsatisfying. In this scenario, the non-receptor tyrosine kinase (TK) c-Src emerged as a promising target for developing new anti-HCC agents. Our group reported a large library of pyrazolo[3,4-d]pyrimidines active as potent c-Src inhibitors. Starting from these data, we applied a molecular hybridization approach to combine the in-house pyrazolo[3,4-d]pyrimidine SI192 with the approved TK inhibitor (TKI) dasatinib, with the aim of identifying a new generation of Src inhibitors. Enzymatic results prompted us to design second-generation compounds with a better binding profile based on a hit optimization protocol comprised of molecular modeling and on-paper rational design. This investigation led to the identification of a few nanomolar Src inhibitors active toward two HCC cell lines (HepG2 and HUH-7) selected according to their high and low c-Src expression, respectively. In particular, 7e showed an IC50 value of 0.7 nM toward Src and a relevant antiproliferative efficacy on HepG2 cells after 72h (IC50 = 2.47 µM). Furthermore, 7e exhibited a cytotoxic profile better than dasatinib. The ADME profile suggested that 7e deserves further investigation as a promising TKI in cancer therapies. Finally, 7e's ability to inhibit HepG2 cell proliferation, elicit an irreversible cytotoxic effect, arrest cellular migration, and induce apoptotic-mediated cell death was assessed.

12.
J Med Chem ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39453626

RESUMO

Ciprofloxacin (CPX) is one of the most employed antibiotics in clinics to date. However, the rise of drug-resistant bacteria is dramatically impairing its efficacy, especially against life-threatening pathogens, such as Pseudomonas aeruginosa. This Gram-negative bacterium is an opportunistic pathogen, often infecting immuno-compromised patients with severe or fatal outcomes. The evidence of the possibility of exploiting Carbonic Anhydrase (CA, EC: 4.2.1.1) enzymes as pharmacological targets along with their role in P. aeruginosa virulence inspired the derivatization of CPX with peculiar CA-inhibiting chemotypes. Thus, a large library of CPX derivatives was synthesized and tested on a panel of bacterial CAs and human isoenzymes I and II. Selected derivatives were evaluated for antibacterial activity, revealing bactericidal and antibiofilm properties for some compounds. Importantly, promising preliminary absorption, distribution, metabolism, and excretion (ADME) properties in vitro were found and no cytotoxicity was detected for some representative compounds when tested in Galleria mellonella larvae.

13.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004393

RESUMO

Although patients would rather oral therapies to injections, the gastrointestinal tract's low permeability makes this method limiting for most compounds, including anticancer drugs. Due to their low bioavailability, oral antitumor therapies suffer from significant variability in pharmacokinetics and efficacy. The improvement of their pharmacokinetic profiles can be achieved by a new approach: the use of natural extracts enriched with polyphenolic compounds that act as intestinal permeability enhancers. Here, we propose a safe sweet cherry extract capable of enhancing oral absorption. The extract was characterized by the HPLC-UV/MS method, evaluated for in vitro antioxidant activity, safety on the Caco-2 cell line, and as a potential permeation enhancer. The sweet cherry extract showed a high antioxidant capacity (ABTS and DPPH assays were 211.74 and 48.65 µmol of Trolox equivalent/g dried extract, respectively), high content of polyphenols (8.44 mg of gallic acid per gram of dry extract), and anthocyanins (1.80 mg of cyanidin-3-glucoside equivalent per g of dry extract), reassuring safety profile (cell viability never lower than 98%), and a significant and fully reversible ability to alter the integrity of the Caco-2 monolayer (+81.5% of Lucifer yellow permeability after 2 h). Furthermore, the ability of the sweet cherry extract to improve the permeability (Papp) and modify the efflux ratio (ER) of reference compounds (atenolol, propranolol, and dasatinib) and selected pyrazolo[3,4-d]pyrimidine derivatives was investigated. The obtained results show a significant increase in apparent permeability across the Caco-2 monolayer (tripled and quadrupled in most cases), and an interesting decrease in efflux ratio when compounds were co-incubated with sweet cherry extract.

14.
J Pharm Biomed Anal ; 235: 115599, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37536115

RESUMO

Short-chain fatty acids (SCFAs), the end products of gut microbial fermentation of dietary fibers and non-digestible polysaccharides, act as a link between the microbiome, immune system, and inflammatory processes. The importance of accurately quantifying SCFAs in plasma has recently emerged to understand their biological role. In this work, a sensitive and reproducible LC-MS/MS method is reported for SCFAs quantification in three different matrices such as human, rat and mouse plasma via derivatization, using as derivatizing agent O-benzylhydroxylamine (O-BHA), coupled with liquid-liquid extraction. First, the instrumental parameters of the mass spectrometer and then the chromatographic conditions were optimized using previously SCFAs derivatives synthetized and used as standards. After that, the best conditions for derivatization and extraction from plasma were studied and a series of determinations were performed on human, rat, and mouse plasma aliquots to validate the overall method (derivatization, extraction, and LC-MS/MS determination). The method showed good performance in terms of recovery (> 80%), precision (RSD <14%), accuracy (RE < ± 10%) and sensitivity (LOQ of 0.01 µM for acetic, butyric, propionic and isobutyric acid) in all plasma samples. The method thus developed and validated was applied to the quantification of major SCFAs in adult and aged mice, germ-free mice and in germ-free recipient mice subjected to fecal transplant from adult and aged donors. Results highlighted how plasma concentrations of SCFAs are correlated with age further highlighting the importance of developing a method that is reliable for the quantification of SCFAs to study their biological role.


Assuntos
Microbioma Gastrointestinal , Espectrometria de Massas em Tandem , Camundongos , Ratos , Humanos , Animais , Idoso , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Fezes/química , Ácidos Graxos Voláteis/análise
15.
Pharmaceutics ; 15(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36839775

RESUMO

The therapeutic use of tyrosine kinase inhibitors (TKIs) represents one of the successful strategies for the treatment of glioblastoma (GBM). Pyrazolo[3,4-d]pyrimidines have already been reported as promising small molecules active as c-Src/Abl dual inhibitors. Herein, we present a series of pyrazolo[3,4-d]pyrimidine derivatives, selected from our in-house library, to identify a promising candidate active against GBM. The inhibitory activity against c-Src and Abl was investigated, and the antiproliferative profile against four GBM cell lines was studied. For the most active compounds endowed with antiproliferative efficacy in the low-micromolar range, the effects toward nontumoral, healthy cell lines (fibroblasts FIBRO 2-93 and keratinocytes HaCaT) was investigated. Lastly, the in silico and in vitro ADME properties of all compounds were also assessed. Among the tested compounds, the promising inhibitory activity against c-Src and Abl (Ki 3.14 µM and 0.44 µM, respectively), the irreversible, apoptotic-mediated death toward U-87, LN18, LN229, and DBTRG GBM cell lines (IC50 6.8 µM, 10.8 µM, 6.9 µM, and 8.5 µM, respectively), the significant reduction in GBM cell migration, the safe profile toward FIBRO 2-93 and HaCaT healthy cell lines (CC50 91.7 µM and 126.5 µM, respectively), the high metabolic stability, and the excellent passive permeability across gastrointestinal and blood-brain barriers led us to select compound 5 for further in vivo assays.

16.
J Med Chem ; 66(2): 1301-1320, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36598465

RESUMO

We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Tanquirases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Niacinamida/farmacologia , Desenvolvimento de Medicamentos , Benzotiazóis/farmacologia , Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas/metabolismo
17.
J Med Chem ; 65(15): 10195-10216, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35899912

RESUMO

In recent years, globalization, global warming, and population aging have contributed to the spread of emerging viruses, such as coronaviruses (COVs), West Nile (WNV), Dengue (DENV), and Zika (ZIKV). The number of reported infections is increasing, and considering the high viral mutation rate, it is conceivable that it will increase significantly in the coming years. The risk caused by viruses is now more evident due to the COVID-19 pandemic, which highlighted the need to find new broad-spectrum antiviral agents able to tackle the present pandemic and future epidemics. DDX3X helicase is a host factor required for viral replication. Selective inhibitors have been identified and developed into broad-spectrum antivirals active against emerging pathogens, including SARS-CoV-2 and most importantly against drug-resistant strains. This perspective describes the inhibitors identified in the last years, highlighting their therapeutic potential as innovative broad-spectrum antivirals.


Assuntos
COVID-19 , Vírus , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/uso terapêutico , RNA Helicases DEAD-box , Humanos , Pandemias , SARS-CoV-2 , Replicação Viral
18.
Food Chem ; 393: 133409, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751205

RESUMO

The angiotensin-converting enzyme (ACE) inhibitory potential of the main protein fractions from Tenebrio molitor larvae (TML) was examined to evaluate their use as a novel antihypertensive functional food. Both fractions contained YAN tripeptide, previously reported as responsible for ACE inhibition. Although YAN has been synthesized and was used as a standard for LC-MS/MS quantification and IC50 against ACE was determined, low yields of YAN from TML did not explain adequately the activity of the whole protein fraction. LC-HRMS/MS investigation led to the identification of other three peptides, which were evaluated in silico, synthesized and tested against ACE. Among them, tetrapeptide NIKY showed the most promising activity (52 µM), highlighting once more the potential of TML and paving the way for exploitation in novel foods.


Assuntos
Tenebrio , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Cromatografia Líquida , Peptídeos/farmacologia , Peptidil Dipeptidase A , Espectrometria de Massas em Tandem
19.
J Med Chem ; 65(10): 7118-7140, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35522977

RESUMO

Monoacylglycerol lipase (MAGL) is the enzyme responsible for the metabolism of 2-arachidonoylglycerol in the brain and the hydrolysis of peripheral monoacylglycerols. Many studies demonstrated beneficial effects deriving from MAGL inhibition for neurodegenerative diseases, inflammatory pathologies, and cancer. MAGL expression is increased in invasive tumors, furnishing free fatty acids as pro-tumorigenic signals and for tumor cell growth. Here, a new class of benzylpiperidine-based MAGL inhibitors was synthesized, leading to the identification of 13, which showed potent reversible and selective MAGL inhibition. Associated with MAGL overexpression and the prognostic role in pancreatic cancer, derivative 13 showed antiproliferative activity and apoptosis induction, as well as the ability to reduce cell migration in primary pancreatic cancer cultures, and displayed a synergistic interaction with the chemotherapeutic drug gemcitabine. These results suggest that the class of benzylpiperidine-based MAGL inhibitors have potential as a new class of therapeutic agents and MAGL could play a role in pancreatic cancer.


Assuntos
Monoacilglicerol Lipases , Neoplasias Pancreáticas , Proliferação de Células , Inibidores Enzimáticos/metabolismo , Humanos , Monoglicerídeos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA