Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Diabetes Obes Metab ; 24(8): 1439-1447, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661378

RESUMO

AIMS: To determine the effect of TTP399, a hepatoselective glucokinase activator, on the risk of ketoacidosis during insulin withdrawal in individuals with type 1 diabetes (T1D). MATERIALS AND METHODS: Twenty-three participants with T1D using insulin pump therapy were randomized to 800 mg TTP399 (n = 12) or placebo (n = 11) for 7 to 10 days. After the treatment period, an insulin withdrawal test (IWT) was performed, during which insulin pumps were removed to induce ketogenesis. The IWT was stopped after 10 hours or if blood glucose reached >399 mg/dL [22.1 mmol/L], if beta-hydroxybutyrate (BHB) was >3.0 mmol/L, or for patient discomfort. The primary endpoint was the proportion of participants who reached BHB concentrations of 1 mmol/L or greater. RESULTS: During the 7- to 10-day treatment period, mean fasting plasma glucose was significantly reduced ( -27.6 vs. -4.4 mg/dL [-1.5 vs. -0.2 mmol/L]; P = 0.03) and there were fewer adverse events, including hypoglycaemia, in the TTP399-treated arm. During the IWT, no differences were observed between TTP399 and placebo in mean serum BHB concentration, mean duration of IWT, or BHB at termination of IWT. However, serum bicarbonate was numerically higher and urine acetoacetate was quantitatively lower in the TTP399-treated participants. As a result of higher bicarbonate values, none of the TTP399-treated participants met the prespecified criteria for diabetic ketoacidosis (DKA), defined as BHB >3 mmol/L and serum bicarbonate <18 mEq/L, compared to 42% of placebo-treated participants. CONCLUSIONS: When used as an adjunctive therapy to insulin, TTP399 improves glycaemia without increasing hypoglycaemia in individuals with T1D. During acute insulin withdrawal, TTP399 did not increase BHB concentrations and decreased the incidence of DKA.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Hipoglicemia , Cetose , Bicarbonatos/uso terapêutico , Glicemia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cetoacidose Diabética/induzido quimicamente , Cetoacidose Diabética/epidemiologia , Glucoquinase , Humanos , Hipoglicemia/induzido quimicamente , Insulina/efeitos adversos , Insulina Regular Humana/uso terapêutico , Compostos Orgânicos
2.
Diabetes Care ; 44(4): 960-968, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33622669

RESUMO

OBJECTIVE: Despite advances in exogenous insulin therapy, many patients with type 1 diabetes do not achieve acceptable glycemic control and remain at risk for ketosis and insulin-induced hypoglycemia. We conducted a randomized controlled trial to determine whether TTP399, a novel hepatoselective glucokinase activator, improved glycemic control in people with type 1 diabetes without increasing hypoglycemia or ketosis. RESEARCH DESIGN AND METHODS: SimpliciT1 was a phase 1b/2 adaptive study. Phase 2 activities were conducted in two parts. Part 1 randomly assigned 20 participants using continuous glucose monitors and continuous subcutaneous insulin infusion (CSII). Part 2 randomly assigned 85 participants receiving multiple daily injections of insulin or CSII. In both parts 1 and 2, participants were randomly assigned to 800 mg TTP399 or matched placebo (fully blinded) and treated for 12 weeks. The primary end point was change in HbA1c from baseline to week 12. RESULTS: The difference in change in HbA1c from baseline to week 12 between TTP399 and placebo was -0.7% (95% CI -1.3, -0.07) in part 1 and -0.21% (95% CI -0.39, -0.04) in part 2. Despite a greater decrease in HbA1c with TTP399, the frequency of severe or symptomatic hypoglycemia decreased by 40% relative to placebo in part 2. In both parts 1 and 2, plasma ß-hydroxybutyrate and urinary ketones were lower during treatment with TTP399 than placebo. CONCLUSIONS: TTP399 lowers HbA1c and reduces hypoglycemia without increasing the risk of ketosis and should be further evaluated as an adjunctive therapy for the treatment of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Glucoquinase , Diabetes Mellitus Tipo 1/tratamento farmacológico , Método Duplo-Cego , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/efeitos adversos , Insulina , Compostos Orgânicos , Resultado do Tratamento
3.
Sci Transl Med ; 11(475)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651321

RESUMO

The therapeutic success of interventions targeting glucokinase (GK) activation for the treatment of type 2 diabetes has been limited by hypoglycemia, steatohepatitis, and loss of efficacy over time. The clinical characteristics of patients with GK-activating mutations or GK regulatory protein (GKRP) loss-of-function mutations suggest that a hepatoselective GK activator (GKA) that does not activate GK in ß cells or affect the GK-GKRP interaction may reduce hyperglycemia in patients with type 2 diabetes while limiting hypoglycemia and liver-associated adverse effects. Here, we review the rationale for TTP399, an oral hepatoselective GKA, and its progression from preclinical to clinical development, with an emphasis on the results of a randomized, double-blind, placebo- and active-controlled phase 2 study of TTP399 in patients with type 2 diabetes. In this 6-month study, TTP399 (800 mg/day) was associated with a clinically significant and sustained reduction in glycated hemoglobin, with a placebo-subtracted least squares mean HbA1c change from baseline of -0.9% (P < 0.01). Compared to placebo, TTP399 (800 mg/day) also increased high-density lipoprotein cholesterol (3.2 mg/dl; P < 0.05), decreased fasting plasma glucagon (-20 pg/ml; P < 0.05), and decreased weight in patients weighing ≥100 kg (-3.4 kg; P < 0.05). TTP399 did not cause hypoglycemia, had no detrimental effect on plasma lipids or liver enzymes, and did not increase blood pressure, highlighting the importance of tissue selectivity and preservation of physiological regulation when targeting key metabolic regulators such as GK.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Glucoquinase/metabolismo , Fígado/enzimologia , Compostos Orgânicos/uso terapêutico , Animais , Glicemia/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus/sangue , Desenho de Fármacos , Descoberta de Drogas , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Compostos Orgânicos/efeitos adversos , Compostos Orgânicos/farmacologia , Transporte Proteico/efeitos dos fármacos , Resultado do Tratamento
4.
PLoS One ; 8(6): e65317, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762342

RESUMO

Activation of brain melanocortin-4 receptors (MC4-R) by α-melanocyte-stimulating hormone (MSH) or inhibition by agouti-related protein (AgRP) regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO) and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD) but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.


Assuntos
Proteína Relacionada com Agouti/antagonistas & inibidores , Fármacos Antiobesidade/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Receptor Tipo 4 de Melanocortina/agonistas , alfa-MSH/genética , Adiposidade/efeitos dos fármacos , Administração Oral , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Dieta Hiperlipídica , Humanos , Leptina/deficiência , Leptina/genética , Masculino , Camundongos , Camundongos Knockout , Ratos , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Tiroxina/sangue , Tri-Iodotironina/sangue , Aumento de Peso/efeitos dos fármacos , alfa-MSH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA