Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Exp Dermatol ; 32(7): 1016-1027, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029962

RESUMO

An in-depth understanding of the mechanical properties of the dermis is indispensable to improve wound healing or slow-down skin ageing. Despite crucial research issues for dermatological and cosmetic industries, very little is known about the mechanical behaviour of the dermis at nanoscale level. This knowledge is relevant not only to human skin but also to mouse skin since this animal model is widely used in basic and preclinical studies for skin biology and health. Here, we describe an original protocol that we developed to specifically measure the mechanical properties of mouse dermis using atomic force microscopy-based nano-indentation approach. Using horizontal cryosections (i.e. parallel to the skin surface) performed at different depths through the dermis of dorsal skin, our protocol allowed us to detect nanoscale mechanical changes between female and male dermis samples. We found that the dermis was softer (i) in females than in males and (ii) with depth within the dermis of male mice. We also quantified compositional differences between female and male skin dermis and found that increased extracellular matrix gene expression and type V collagen staining were associated with increased dermal stiffness in male mice, compared with females. Our results demonstrating a sexual dimorphism in the nanomechanical properties and molecular composition of mouse dermis, open the way to better consider sex-related cutaneous differences to understand skin disease and to stimulate the development of female versus male-specific products with more appropriate dermatological treatments and cosmetic interventions.


Assuntos
Derme , Caracteres Sexuais , Masculino , Feminino , Humanos , Camundongos , Animais , Microscopia de Força Atômica/métodos , Fenômenos Biomecânicos , Pele
2.
Genesis ; 58(5): e23359, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32191380

RESUMO

Recombination systems represent a major breakthrough in the field of genetic model engineering. The Flp recombinases (Flp, Flpe, and Flpo) bind and cleave DNA Frt sites. We created a transgenic mouse strain ([Fsp1-Flpo]) expressing the Flpo recombinase in fibroblasts. This strain was obtained by random insertion inside mouse zygotes after pronuclear injection. Flpo expression was placed under the control of the promoter of Fsp1 (fibroblast-specific protein 1) gene, whose expression starts after gastrulation at Day 8.5 in cells of mesenchymal origin. We verified the correct expression and function of the Flpo enzyme by several ex vivo and in vivo approaches. The [Fsp1-Flpo] strain represents a genuine tool to further target the recombination of transgenes with Frt sites specifically in cells of mesenchymal origin or with a fibroblastic phenotype.


Assuntos
DNA Nucleotidiltransferases/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Animais , Células Cultivadas , DNA Nucleotidiltransferases/metabolismo , Fibroblastos/metabolismo , Gástrula/metabolismo , Marcação de Genes/métodos , Células HaCaT , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Zigoto/metabolismo
3.
Cell Mol Life Sci ; 72(5): 1009-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25260970

RESUMO

The metalloproteinase BMP-1 (bone morphogenetic protein-1) plays a major role in the control of extracellular matrix (ECM) assembly and growth factor activation. Most of the growth factors activated by BMP-1 are members of the TGF-ß superfamily known to regulate multiple biological processes including embryonic development, wound healing, inflammation and tumor progression. In this study, we used an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic approach to reveal the release of proteolytic fragments from the cell surface or the ECM by BMP-1. Thirty-eight extracellular proteins were found in significantly higher or lower amounts in the conditioned medium of HT1080 cells overexpressing BMP-1 and thus, could be considered as candidate substrates. Strikingly, three of these new candidates (betaglycan, CD109 and neuropilin-1) were TGF-ß co-receptors, also acting as antagonists when released from the cell surface, and were chosen for further substrate validation. Betaglycan and CD109 proved to be directly cleaved by BMP-1 and the corresponding cleavage sites were extensively characterized using a new mass spectrometry approach. Furthermore, we could show that the ability of betaglycan and CD109 to interact with TGF-ß was altered after cleavage by BMP-1, leading to increased and prolonged SMAD2 phosphorylation in BMP-1-overexpressing cells. Betaglycan processing was also observed in primary corneal keratocytes, indicating a general and novel mechanism by which BMP-1 directly affects signaling by controlling TGF-ß co-receptor activity. The proteomic data have been submitted to ProteomeXchange with the identifier PXD000786 and doi: 10.6019/PXD000786 .


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Proteômica , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Antígenos CD/metabolismo , Proteína Morfogenética Óssea 1/genética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Matriz Extracelular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Neuropilina-1/metabolismo , Peptídeos/análise , Fosforilação , Ligação Proteica , Proteoglicanas/metabolismo , Proteólise , Transdução de Sinais , Proteína Smad2/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Fator de Crescimento Transformador beta/metabolismo
4.
Am J Pathol ; 180(6): 2214-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22469842

RESUMO

Transcriptional intermediary factor 1γ (TIF1γ; alias, TRIM33/RFG7/PTC7/ectodermin) belongs to an evolutionarily conserved family of nuclear factors that have been implicated in stem cell pluripotency, embryonic development, and tumor suppression. TIF1γ expression is markedly down-regulated in human pancreatic tumors, and Pdx1-driven Tif1γ inactivation cooperates with the Kras(G12D) oncogene in the mouse pancreas to induce intraductal papillary mucinous neoplasms. In this study, we report that aged Pdx1-Cre; LSL-Kras(G12D); Tif1γ(lox/lox) mice develop pancreatic ductal adenocarcinomas (PDACs), an aggressive and always fatal neoplasm, demonstrating a Tif1γ tumor-suppressive function in the development of pancreatic carcinogenesis. Deletion of SMAD4/DPC4 (deleted in pancreatic carcinoma locus 4) occurs in approximately 50% of human cases of PDAC. We, therefore, assessed the genetic relationship between Tif1γ and Smad4 signaling in pancreatic tumors and found that Pdx1-Cre; LSL-Kras(G12D); Smad4(lox/lox); Tif1γ(lox/lox) (alias, KSSTT) mutant mice exhibit accelerated tumor progression. Consequently, Tif1γ tumor-suppressor effects during progression from a premalignant to a malignant state in our mouse model of pancreatic cancer are independent of Smad4. These findings establish, for the first time to our knowledge, that Tif1γ and Smad4 both regulate an intraductal papillary mucinous neoplasm-to-PDAC sequence through distinct tumor-suppressor programs.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteína Smad4/genética , Fatores de Transcrição/genética , Animais , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Progressão da Doença , Deleção de Genes , Genes Supressores de Tumor , Predisposição Genética para Doença , Imageamento por Ressonância Magnética , Camundongos , Camundongos Mutantes , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Transdução de Sinais/genética , Proteína Smad4/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/fisiologia
5.
Pancreatology ; 13(3): 191-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23719586

RESUMO

BACKGROUND/OBJECTIVES: Pdx1-Cre; LSL-KRAS(G12D) mice develop premalignant pancreatic ductal lesions that can possibly progress spontaneously to pancreatic ductal adenocarcinoma (PDAC). Although Pdx1-Cre is expressed in the embryonic endoderm, which gives rise to all pancreatic lineages, the possible consequences of KRAS(G12D) expression in the endocrine compartment have never been finely explored. METHODS: We examined by histology whether Pdx1-driven expression of KRAS(G12D) could induce islets of Langerhans defects. RESULTS: We observed in Pdx1-Cre; LSL-KRAS(G12D) early disorganization of the endocrine compartment including i) hyperplasia affecting all the endocrine lineages, ii) ectopic onset of Ck19-positive (ductal-like) structures within the endocrine islets, and iii) the presence of islet cells co-expressing glucagon and insulin, all occurring before the onset of ducts lesions. CONCLUSIONS: This work indicates that expression of KRAS(G12D) in Pdx1-expressing cells during embryogenesis affects the endocrine pancreas, and highlights the need to deepen possible consequences on both glucose metabolism and PDAC initiation.


Assuntos
Carcinoma Ductal Pancreático/patologia , Ilhotas Pancreáticas/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Progressão da Doença , Proteínas de Homeodomínio/biossíntese , Camundongos , Pâncreas/embriologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transativadores/biossíntese
6.
Biochem J ; 445(2): 285-93, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22738338

RESUMO

NUPR1 (nuclear protein 1), also called P8 (molecular mass 8 kDa) or COM1 (candidate of metastasis 1), is involved in the stress response and in cancer progression. In the present study, we investigated whether human NUPR1 expression was regulated by TGFß (transforming growth factor ß), a secreted polypeptide largely involved in tumorigenesis. We demonstrate that the expression of NUPR1 was activated by TGFß at the transcriptional level. We show that this activation is mediated by the SMAD proteins, which are transcription factors specifically involved in the signalling of TGFß superfamily members. NUPR1 promoter analysis reveals the presence of a functional TGFß-response element binding the SMAD proteins located in the genomic DNA region corresponding to the 5'-UTR (5'-untranslated region). Altogether, the molecular results of the present study, which demonstrate the existence of a TGFß/SMAD/NUPR1 activation cascade, open the way to consider and investigate further a new mechanism enabling TGFß to promote tumorigenesis by inducing stress resistance.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Proteínas Smad/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo , Animais , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Ligação Proteica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Smad/antagonistas & inibidores , Proteínas Smad/genética , Fator de Crescimento Transformador beta/genética
7.
J Cell Biol ; 174(2): 175-83, 2006 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-16831886

RESUMO

Epithelial-mesenchymal transition (EMT) occurs during embryogenesis, carcinoma invasiveness, and metastasis and can be elicited by transforming growth factor-beta (TGF-beta) signaling via intracellular Smad transducers. The molecular mechanisms that control the onset of EMT remain largely unexplored. Transcriptomic analysis revealed that the high mobility group A2 (HMGA2) gene is induced by the Smad pathway during EMT. Endogenous HMGA2 mediates EMT by TGF-beta, whereas ectopic HMGA2 causes irreversible EMT characterized by severe E-cadherin suppression. HMGA2 provides transcriptional input for the expression control of four known regulators of EMT, the zinc-finger proteins Snail and Slug, the basic helix-loop-helix protein Twist, and inhibitor of differentiation 2. We delineate a pathway that links TGF-beta signaling to the control of epithelial differentiation via HMGA2 and a cohort of major regulators of tumor invasiveness and metastasis. This network of signaling/transcription factors that work sequentially to establish EMT suggests that combinatorial detection of these proteins could serve as a new tool for EMT analysis in cancer patients.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Proteína HMGA2/metabolismo , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGA2/genética , Humanos , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Transcrição Gênica/efeitos dos fármacos
8.
Sci Rep ; 11(1): 15075, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302028

RESUMO

Pancreatic Ductal AdenoCarcinoma (PDAC) represents about 90% of pancreatic cancers. It is one of the most aggressive cancer, with a 5-year survival rate below 10% due to late diagnosis and poor therapeutic efficiency. This bad prognosis thus encourages intense research in order to better understand PDAC pathogenesis and molecular basis leading to the development of innovative therapeutic strategies. This research frequently involves the KC (LSL:KrasG12D;Pdx1-CRE) genetically engineered mouse model, which leads to pancreatic cancer predisposition. However, as frequently encountered in animal models, the KC mouse model also exhibits biases. Herein, we report a new adverse effect of KrasG12D mutation in KC mouse model. In our hands, 10% of KC mice developed clinical signs reaching pre-defined end-points between 100- and 150-days post-parturition, and associated with large thymic mass development. Histological and genetic analyses of this massive thymus enabled us (1) to characterize it as a highly proliferative thymic lymphoma and (2) to detect the unexpected recombination of the Lox-STOP-Lox cassette upstream KrasG12D allele and subsequent KRASG12D protein expression in all cells composing thymic masses. Finally, we highlighted that development of such thymic tumor was associated with accelerated pancreatic carcinogenesis, immune compartment disorganization, and in some cases, lung malignancies.


Assuntos
Carcinogênese/genética , Proteínas de Homeodomínio/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias do Timo/genética , Transativadores/genética , Animais , Carcinogênese/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Pâncreas/patologia , Ductos Pancreáticos/patologia , Timoma/genética , Timoma/patologia , Neoplasias do Timo/patologia , Neoplasias Pancreáticas
9.
Front Immunol ; 12: 612271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889150

RESUMO

Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide and is predicted to become second in 2030 in industrialized countries if no therapeutic progress is made. Among the different types of pancreatic cancers, Pancreatic Ductal Adenocarcinoma (PDAC) is by far the most represented one with an occurrence of more than 90%. This specific cancer is a devastating malignancy with an extremely poor prognosis, as shown by the 5-years survival rate of 2-9%, ranking firmly last amongst all cancer sites in terms of prognostic outcomes for patients. Pancreatic tumors progress with few specific symptoms and are thus at an advanced stage at diagnosis in most patients. This malignancy is characterized by an extremely dense stroma deposition around lesions, accompanied by tissue hypovascularization and a profound immune suppression. Altogether, these combined features make access to cancer cells almost impossible for conventional chemotherapeutics and new immunotherapeutic agents, thus contributing to the fatal outcomes of the disease. Initially ignored, the Tumor MicroEnvironment (TME) is now the subject of intensive research related to PDAC treatment and could contain new therapeutic targets. In this review, we will summarize the current state of knowledge in the field by focusing on TME composition to understand how this specific compartment could influence tumor progression and resistance to therapies. Attention will be paid to Tenascin-C, a matrix glycoprotein commonly upregulated during cancer that participates to PDAC progression and thus contributes to poor prognosis.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estromais/metabolismo , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/terapia , Transformação Celular Neoplásica/metabolismo , Humanos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Células Estromais/patologia , Microambiente Tumoral
10.
Front Immunol ; 12: 613438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054795

RESUMO

Transforming growth factor-ß (TGF-ß) isoforms are secreted as inactive complexes formed through non-covalent interactions between bioactive TGF-ß entities and their N-terminal pro-domains called latency-associated peptides (LAP). Extracellular activation of latent TGF-ß within this complex is a crucial step in the regulation of TGF-ß activity for tissue homeostasis and immune cell function. We previously showed that the matrix glycoprotein Tenascin-X (TN-X) interacted with the small latent TGF-ß complex and triggered the activation of the latent cytokine into a bioactive TGF-ß. This activation most likely occurs through a conformational change within the latent TGF-ß complex and requires the C-terminal fibrinogen-like (FBG) domain of the glycoprotein. As the FBG-like domain is highly conserved among the Tenascin family members, we hypothesized that Tenascin-C (TN-C), Tenascin-R (TN-R) and Tenascin-W (TN-W) might share with TN-X the ability to regulate TGF-ß bioavailability through their C-terminal domain. Here, we demonstrate that purified recombinant full-length Tenascins associate with the small latent TGF-ß complex through their FBG-like domains. This association promotes activation of the latent cytokine and subsequent TGF-ß cell responses in mammary epithelial cells, such as cytostasis and epithelial-to-mesenchymal transition (EMT). Considering the pleiotropic role of TGF-ß in numerous physiological and pathological contexts, our data indicate a novel common function for the Tenascin family in the regulation of tissue homeostasis under healthy and pathological conditions.


Assuntos
Tenascina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Homeostase , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Smad/química , Proteínas Smad/metabolismo , Relação Estrutura-Atividade , Tenascina/química , Tenascina/genética , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/genética
11.
Int J Mol Sci ; 11(2): 407-426, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20386646

RESUMO

Collagens, or more precisely collagen-based extracellular matrices, are often considered as a metazoan hallmark. Among the collagens, fibrillar collagens are present from sponges to humans, and are involved in the formation of the well-known striated fibrils. In this review we discuss the different steps in the evolution of this protein family, from the formation of an ancestral fibrillar collagen gene to the formation of different clades. Genomic data from the choanoflagellate (sister group of Metazoa) Monosiga brevicollis, and from diploblast animals, have suggested that the formation of an ancestral alpha chain occurred before the metazoan radiation. Phylogenetic studies have suggested an early emergence of the three clades that were first described in mammals. Hence the duplication events leading to the formation of the A, B and C clades occurred before the eumetazoan radiation. Another important event has been the two rounds of "whole genome duplication" leading to the amplification of fibrillar collagen gene numbers, and the importance of this diversification in developmental processes. We will also discuss some other aspects of fibrillar collagen evolution such as the development of the molecular mechanisms involved in the formation of procollagen molecules and of striated fibrils.


Assuntos
Colágenos Fibrilares/metabolismo , Animais , Coanoflagelados/metabolismo , Evolução Molecular , Colágenos Fibrilares/química , Colágenos Fibrilares/genética , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ouriços-do-Mar/metabolismo
12.
Matrix Biol Plus ; 6-7: 100021, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543019

RESUMO

Cancer is a systemic disease involving multiple components produced from both tumor cells themselves and surrounding stromal cells. The pro- or anti-tumoral role of the stroma is still under debate. Indeed, it has long been considered the main physical barrier to the diffusion of chemotherapy by its dense and fibrous nature and its poor vascularization. However, in murine models, the depletion of fibroblasts, the main ExtraCellular Matrix (ECM)-producing cells, led to more aggressive tumors even though they were more susceptible to anti-angiogenic and immuno-modulators. Tenascin-C (TNC) is a multifunctional matricellular glycoprotein (i.e. an ECM protein also able to induce signaling pathway) and is considered as a marker of tumor expansion and metastasis. However, the status of other tenascin (TN) family members and particularly Tenascin-X (TNX) has been far less studied during this pathological process and is still controversial. Herein, through (1) in silico analyses of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and (2) immunohistochemistry staining of Tissue MicroArrays (TMA), we performed a large and extensive study of TNX expression at both mRNA and protein levels (1) in the 6 cancers with the highest incidence and mortality in the world (i.e. lung, breast, colorectal, prostate, stomach and liver) and (2) in the cancers for which sparse data regarding TNX expression already exist in the literature. We thus demonstrated that, in most cancers, TNX expression is significantly downregulated during cancer progression and we also highlighted, when data were available, that high TNXB mRNA expression in cancer is correlated with a good survival prognosis.

13.
Sci Rep ; 10(1): 3880, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127548

RESUMO

Transforming growth factor (TGFß) is a secreted factor, which accumulates in tissues during many physio- and pathological processes such as embryonic development, wound healing, fibrosis and cancer. In order to analyze the effects of increased microenvironmental TGFß concentration in vivo, we developed a conditional transgenic mouse model (Flpo/Frt system) expressing bioactive TGFß in fibroblasts, a cell population present in the microenvironment of almost all tissues. To achieve this, we created the genetically-engineered [Fsp1-Flpo; FSFTGFßCA] mouse model. The Fsp1-Flpo allele consists in the Flpo recombinase under the control of the Fsp1 (fibroblast-specific promoter 1) promoter. The FSFTGFßCA allele consists in a transgene encoding a constitutively active mutant form of TGFß (TGFßCA) under the control of a Frt-STOP-Frt (FSF) cassette. The FSFTGFßCA allele was created to generate this model, and functionally validated by in vitro, ex vivo and in vivo techniques. [Fsp1-Flpo; FSFTGFßCA] animals do not present any obvious phenotype despite the correct expression of TGFßCA transgene in fibroblasts. This [Fsp1-Flpo; FSFTGFßCA] model is highly pertinent for future studies on the effect of increased microenvironmental bioactive TGFß concentrations in mice bearing Cre-dependent genetic alterations in other compartments (epithelial or immune compartments for instance). These dual recombinase system (DRS) approaches will enable scientists to study uncoupled spatiotemporal regulation of different genetic alterations within the same mouse, thus better replicating the complexity of human diseases.


Assuntos
Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , Expressão Gênica , Engenharia Genética , Células Hep G2 , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais
14.
Sci Signal ; 13(639)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636307

RESUMO

Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-ß (TGF-ß), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-ß signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Proteólise , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteína Morfogenética Óssea 1/genética , Adesão Celular , Linhagem Celular Tumoral , Humanos , Trombospondina 1/genética , Fator de Crescimento Transformador beta/genética , Xenopus laevis
15.
Mol Biol Cell ; 16(4): 1987-2002, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15689496

RESUMO

Epithelial-mesenchymal transition (EMT) contributes to normal tissue patterning and carcinoma invasiveness. We show that transforming growth factor (TGF)-beta/activin members, but not bone morphogenetic protein (BMP) members, can induce EMT in normal human and mouse epithelial cells. EMT correlates with the ability of these ligands to induce growth arrest. Ectopic expression of all type I receptors of the TGF-beta superfamily establishes that TGF-beta but not BMP pathways can elicit EMT. Ectopic Smad2 or Smad3 together with Smad4 enhanced, whereas dominant-negative forms of Smad2, Smad3, or Smad4, and wild-type inhibitory Smad7, blocked TGF-beta-induced EMT. Transcriptomic analysis of EMT kinetics identified novel TGF-beta target genes with ligand-specific responses. Using a TGF-beta type I receptor that cannot activate Smads nor induce EMT, we found that Smad signaling is critical for regulation of all tested gene targets during EMT. One such gene, Id2, whose expression is repressed by TGF-beta1 but induced by BMP-7 is critical for regulation of at least one important myoepithelial marker, alpha-smooth muscle actin, during EMT. Thus, based on ligand-specific responsiveness and evolutionary conservation of the gene expression patterns, we begin deciphering a genetic network downstream of TGF-beta and predict functional links to the control of cell proliferation and EMT.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Animais , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transativadores/genética , Transcrição Gênica/genética
16.
Mol Cell Biol ; 24(10): 4241-54, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15121845

RESUMO

Transforming growth factors beta (TGF-betas) inhibit growth of epithelial cells and induce differentiation changes, such as epithelial-mesenchymal transition (EMT). On the other hand, bone morphogenetic proteins (BMPs) weakly affect epithelial cell growth and do not induce EMT. Smad4 transmits signals from both TGF-beta and BMP pathways. Stimulation of Smad4-deficient epithelial cells with TGF-beta 1 or BMP-7 in the absence or presence of exogenous Smad4, followed by cDNA microarray analysis, revealed 173 mostly Smad4-dependent, TGF-beta-, or BMP-responsive genes. Among 25 genes coregulated by both factors, inhibitors of differentiation Id2 and Id3 showed long-term repression by TGF-beta and sustained induction by BMP. The opposing regulation of Id genes is critical for proliferative and differentiation responses. Hence, ectopic Id2 or Id3 expression renders epithelial cells refractory to growth inhibition and EMT induced by TGF-beta, phenocopying the BMP response. Knockdown of endogenous Id2 or Id3 sensitizes epithelial cells to BMP, leading to robust growth inhibition and induction of transdifferentiation. Thus, Id genes sense Smad signals and create a permissive or refractory nuclear environment that defines decisions of cell fate and proliferation.


Assuntos
Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/farmacologia , Animais , Sequência de Bases , Proteína Morfogenética Óssea 7 , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , DNA Complementar/genética , Proteínas de Ligação a DNA/fisiologia , Epitélio/efeitos dos fármacos , Epitélio/fisiologia , Humanos , Proteína 2 Inibidora de Diferenciação , Proteínas Inibidoras de Diferenciação , Mesoderma/efeitos dos fármacos , Mesoderma/fisiologia , Camundongos , Família Multigênica , Proteínas de Neoplasias/fisiologia , Transdução de Sinais , Proteína Smad4 , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/fisiologia
17.
Mol Cell Biol ; 23(13): 4494-510, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12808092

RESUMO

Smad proteins transduce transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-beta and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-beta or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-beta- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-beta or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-beta growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-beta superfamily pathways.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Northern Blotting , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Células COS , Diferenciação Celular , Divisão Celular , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Fatores de Ligação de DNA Eritroide Específicos , Glutationa Transferase/metabolismo , Humanos , Camundongos , Microscopia de Fluorescência , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proto-Oncogene Mas , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Smad , Proteína Smad1 , Proteína Smad2 , Proteína Smad3 , Proteína Smad4 , Timidina/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/antagonistas & inibidores , Células Tumorais Cultivadas , Fator de Transcrição YY1
18.
Mol Biol Cell ; 14(3): 1279-94, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631740

RESUMO

We have shown previously that the transforming growth factor-beta (TGFbeta)-regulated Sma-Mad (Smad) protein 3 and Smad4 proteins transactivate the apolipoprotein C-III promoter in hepatic cells via a hormone response element that binds the nuclear receptor hepatocyte nuclear factor 4 (HNF-4). In the present study, we show that Smad3 and Smad4 but not Smad2 physically interact with HNF-4 via their Mad homology 1 domains both in vitro and in vivo. The synergistic transactivation of target promoters by Smads and HNF-4 was shown to depend on the specific promoter context and did not require an intact beta-hairpin/DNA binding domain of the Smads. Using glutathione S-transferase interaction assays, we established that two regions of HNF-4, the N-terminal activation function 1 (AF-1) domain (aa 1-24) and the C-terminal F domain (aa 388-455) can mediate physical Smad3/HNF-4 interactions in vitro. In vivo, Smad3 and Smad4 proteins enhanced the transactivation function of various GAL4-HNF-4 fusion proteins via the AF-1 and the adjacent DNA binding domain, whereas a single tyrosine to alanine substitution in AF-1 abolished coactivation by Smads. The findings suggest that the transcriptional cross talk between the TGFbeta-regulated Smads and HNF-4 is mediated by specific functional domains in the two types of transcription factors. Furthermore, the specificity of this interaction for certain target promoters may play an important role in various hepatocyte functions, which are regulated by TGFbeta and the Smads.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Apolipoproteína C-III , Apolipoproteínas C/genética , Apolipoproteínas C/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fator I de Transcrição COUP , Linhagem Celular , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad3 , Proteína Smad4 , Fatores de Transcrição/genética , Ativação Transcricional
19.
Cell Mol Gastroenterol Hepatol ; 4(2): 263-282, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28752115

RESUMO

BACKGROUND & AIMS: Transforming growth factor beta (TGFß) acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFß activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFß-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression, and its effects on acinar cells have so far remained elusive. METHODS: We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFß receptor (TßRICA) in the pancreatic acinar compartment. RESULTS: We observed that TßRICA expression induced acinar-to-ductal metaplasia (ADM) reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous pancreatic intraepithelial neoplasia. This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, whereas at the molecular level, we evidenced a modulation in the expression of transcription factors such as Hnf1ß, Sox9, and Hes1. CONCLUSIONS: We demonstrate that TGFß pathway activation plays a crucial role in pancreatic tumor initiation through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients.

20.
Methods Mol Biol ; 1344: 147-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26520123

RESUMO

In recent years, the importance of the cell biological process of epithelial-mesenchymal transition (EMT) has been established via an exponentially growing number of reports. EMT has been documented during embryonic development, tissue fibrosis, and cancer progression in vitro, in animal models in vivo and in human specimens. EMT relates to many molecular and cellular alterations that occur when epithelial cells undergo a switch in differentiation that generates mesenchymal-like cells with newly acquired migratory and invasive properties. In addition, EMT relates to a nuclear reprogramming similar to the one occurring in the generation of induced pluripotent stem cells. Via such a process, EMT is gradually established to promote the generation and maintenance of adult tissue stem cells which under disease states such as cancer, are known as cancer stem cells. EMT is induced by developmental growth factors, oncogenes, radiation, and hypoxia. A prominent growth factor that causes EMT is transforming growth factor ß (TGF-ß).A series of molecular and cellular techniques can be applied to define and characterize the state of EMT in diverse biological samples. These methods range from DNA and RNA-based techniques that measure the expression of key EMT regulators and markers of epithelial or mesenchymal differentiation to functional assays of cell mobility, invasiveness and in vitro stemness. This chapter focuses on EMT induced by TGF-ß and provides authoritative protocols and relevant reagents and citations of key publications aiming at assisting newcomers that enter this prolific area of biomedical sciences, and offering a useful reference tool to pioneers and aficionados of the field.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Fator de Crescimento Transformador beta/farmacologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Colágeno , Combinação de Medicamentos , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Laminina , Camundongos , Proteoglicanas , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA