Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 159(4): 1834-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22645068

RESUMO

The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704-4,661 mg kg(-1) dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems.


Assuntos
Astrágalo/metabolismo , Ecossistema , Selênio/metabolismo , Animais , Flores/anatomia & histologia , Flores/metabolismo , Herbivoria/fisiologia , Larva/fisiologia , Modelos Biológicos , Mariposas/fisiologia , Especificidade de Órgãos , Sementes/anatomia & histologia , Sementes/metabolismo , Espectrometria por Raios X , Enxofre/metabolismo , Espectroscopia por Absorção de Raios X
2.
Front Plant Sci ; 9: 1213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177943

RESUMO

Endophytes can enhance plant stress tolerance by promoting growth and affecting elemental accumulation, which may be useful in phytoremediation. In earlier studies, up to 35% elemental selenium (Se0) was found in Se hyperaccumulator Astragalus bisulcatus. Since Se0 can be produced by microbes, the plant Se0 was hypothesized to be microbe-derived. Here we characterize a fungal endophyte of A. bisulcatus named A2. It is common in seeds from natural seleniferous habitat containing 1,000-10,000 mg kg-1 Se. We identified A2 as Alternaria tenuissima via 18S rRNA sequence analysis and morphological characterization. X-ray microprobe analysis of A. bisulcatus seeds that did or did not harbor Alternaria, showed that both contained >90% organic seleno-compounds with C-Se-C configuration, likely methylselenocysteine and glutamyl-methylselenocysteine. The seed Se was concentrated in the embryo, not the seed coat. X-ray microprobe analysis of A2 in pure culture showed the fungus produced Se0 when supplied with selenite, but accumulated mainly organic C-Se-C compounds when supplied with selenate. A2 was completely resistant to selenate up to 300 mg L-1, moderately resistant to selenite (50% inhibition at ∼50 mg Se L-1), but relatively sensitive to methylselenocysteine and to Se extracted from A. bisulcatus (50% inhibition at 25 mg Se L-1). Four-week old A. bisulcatus seedlings derived from surface-sterilized seeds containing endophytic Alternaria were up to threefold larger than seeds obtained from seeds not showing evidence of fungal colonization. When supplied with Se, the Alternaria-colonized seedlings had lower shoot Se and sulfur levels than seedlings from uncolonized seeds. In conclusion, A. tenuissima may contribute to the Se0 observed earlier in A. bisulcatus, and affect host growth and Se accumulation. A2 is sensitive to the Se levels found in its host's tissues, but may avoid Se toxicity by occupying low-Se areas (seed coat, apoplast) and converting plant Se to non-toxic Se0. These findings illustrate the potential for hyperaccumulator endophytes to affect plant properties relevant for phytoremediation. Facultative endophytes may also be applicable in bioremediation and biofortification, owing to their capacity to turn toxic inorganic forms of Se into non-toxic or even beneficial, organic forms with anticarcinogenic properties.

3.
Ecology ; 88(7): 1850-6, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17645031

RESUMO

Mutualistic interactions with fungal endophytes and dinitrogen-fixing bacteria are known to exert key biological influences on the host plant. The influence of a fungal endophyte alkaloid on the toxicity of a plant has been documented in Oxytropis sericea. Oxytropis sericea is a perennial legume responsible for livestock poisoning in western North America. Livestock poisoning is attributed to the alkaloid swainsonine, which is synthesized inside the plant by the fungal endophyte Embellisia sp. In this study, the ability of Oxytropis sericea to form a dinitrogen-fixing symbiosis with Rhizobium and the effects of this symbiosis on the production of swainsonine by Embellisia sp. were evaluated in a greenhouse environment. Seeds of O. sericea were grown in plastic containers. Twenty-week-old O. sericea seedlings were inoculated with four strains of Rhizobium. Twenty weeks after inoculation, plant growth and root nodulation by Rhizobium were measured. Dinitrogen fixation was confirmed using an acetylene reduction assay (ARA) on excised root nodules. Dry leaves were analyzed for swainsonine content. A second set of plants was treated with fungicide to evaluate the effect of reduced fungal endophyte infection on plant growth and swainsonine production. All inoculated plants produced indeterminate nodules. The ARA indicated that 98% of the excised nodules were fixing dinitrogen. Rhizobium-treated plants had greater swainsonine concentrations than the non-inoculated controls. Plants that established from seeds treated with fungicide had lower biomass than non-fungicide-treated controls and plants treated with foliar fungicide. Plants treated with foliar fungicide and the controls had greater swainsonine concentrations than the plants that received seed fungicide. This greenhouse study is the first report of nodulation and dinitrogen fixation in O. sericea. It also demonstrates that dinitrogen fixation increases the production of swainsonine in O. sericea plants infected with Embellisia sp. Results from this study suggest that dinitrogen fixation affects swainsonine production and has the potential to support the symbiosis between Embellisia sp. and O. sericea when soil nitrogen is limited. Oxytropis sericea competitiveness appears to be facilitated by an ability to simultaneously associate with Rhizobium and a fungal symbiont.


Assuntos
Ascomicetos/metabolismo , Fixação de Nitrogênio , Oxytropis/microbiologia , Rhizobium/fisiologia , Swainsonina/metabolismo , Fungicidas Industriais/farmacologia , Oxytropis/efeitos dos fármacos , Oxytropis/toxicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Folhas de Planta/toxicidade , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sementes/efeitos dos fármacos , Sementes/microbiologia , Sementes/toxicidade , Swainsonina/toxicidade , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA