Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Soft Matter ; 20(18): 3806-3813, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38646972

RESUMO

Performing conventional mechanical characterization techniques on soft materials can be challenging due to issues such as limited sample volumes and clamping difficulties. Deep indentation and puncture is a promising alternative as it is an information-rich measurement with the potential to be performed in a high-throughput manner. Despite its promise, the method lacks standardized protocols, and open questions remain about its possible limitations. Addressing these shortcomings is vital to ensure consistent methodology, measurements, and interpretation across samples and labs. To fill this gap, we examine the role of finite sample dimensions (and by extension, volume) on measured forces to determine the sample geometry needed to perform and unambiguously interpret puncture tests. Through measurements of puncture on a well-characterized elastomer using systematically varied sample dimensions, we show that the apparent mechanical response of a material is in fact sensitive to near-wall effects, and that additional properties, such as the sliding friction coefficient, can only be extracted in the larger dimension case where such effects are negligible.

2.
Nat Mater ; 21(4): 390-397, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361951

RESUMO

Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.


Assuntos
Materiais Biocompatíveis , Biologia Sintética , Polímeros
3.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37929758

RESUMO

We demonstrate that the sessile tunicate Botryllus schlosseri is remarkably resilient to applied loads by attaching the animals to an extensile substrate subjected to quasistatic equiradial loads. Animals can withstand radial extension of the substrate to strain values as high as 20% before they spontaneously detach. In the small to moderate strain regime, we found no relationship between the dynamic size of the external vascular bed and the magnitude of applied stretch, despite known force sensitivities of the vascular tissue at the cellular level. We attribute this resilience to the presence and mechanical properties of the tunic, the cellulose-enriched gel-like substance that encases the animal bodies and surrounding vasculature.


Assuntos
Resiliência Psicológica , Urocordados , Animais , Urocordados/química
4.
Soft Matter ; 18(26): 4897-4904, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35722727

RESUMO

Materials that utilize heterogeneous microstructures to control macroscopic mechanical response are ubiquitous in nature. Yet, translating nature's lessons to create synthetic soft solids has remained challenging. This is largely due to the limited synthetic routes available for creating soft composites, particularly with submicron features, as well as uncertainty surrounding the role of such a microstructured secondary phase in determining material behavior. This work leverages recent advances in the development of photocrosslinkable thermogelling nanoemulsions to produce composite hydrogels with a secondary phase assembled at well controlled length scales ranging from tens of nm to tens of µm. Through analysis of the mechanical response of these fluid-filled composite hydrogels, it is found that the size scale of the secondary phase has a profound impact on the strength when at or above the elastofracture length. Moreover, this work shows that mechanical integrity of fluid-filled soft solids can be sensitive to the size scale of the secondary phase.

5.
Soft Matter ; 18(15): 3063-3075, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35363236

RESUMO

Evolution of composition, rheology, and morphology during phase separation in complex fluids is highly coupled to rheological and mass transport processes within the emerging phases, and understanding this coupling is critical for materials design of multiphase complex fluids. Characterizing these dependencies typically requires careful measurement of a large number of equilibrium and transport properties that are difficult to measure in situ as phase separation proceeds. Here, we propose and demonstrate a high-throughput microscopy platform to achieve simultaneous, in situ mapping of time-evolving morphology and microrheology in phase separating complex fluids over a large compositional space. The method was applied to a canonical example of polyelectrolyte complex coacervation, whereby mixing of oppositely charged species leads to liquid-liquid phase separation into distinct solute-dense and dilute phases. Morphology and rheology were measured simultaneously and kinetically after mixing to track the progression of phase separation. Once equilibrated, the dense phase viscosity was determined to high compositional accuracy using passive probe microrheology, and the results were used to derive empirical relationships between the composition and viscosity. These relationships were inverted to reconstruct the dense phase boundary itself, and further extended to other mixture compositions. The resulting predictions were validated by independent equilibrium compositional measurements. This platform paves the way for rapid screening and formulation of complex fluids and (bio)macromolecular materials, and serves as a critical link between formulation and rheology for multi-phase material discovery.

6.
Langmuir ; 37(33): 9939-9951, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370465

RESUMO

Photosurfactants have shown considerable promise for enabling stimuli-responsive control of the properties and motion of fluid interfaces. Recently, a number of photoswitch chemistries have emerged to tailor the photoresponsive properties of photosurfactants. However, systematic studies investigating how photoresponsive surfactant behavior depends on the photochemical and photophysical properties of the switch remain scarce. In this work, we develop synthetic schemes and surfactant designs to produce a well-controlled library of photosurfactants to comparatively assess the behavior of photoswitch chemistry on interfacial behavior. We employ photoinduced spreading of droplets at fluid interfaces as a model for such studies. We show that although photosurfactant response is largely guided by expected trends with changes in polarity of the photoswitch, interfacial behavior also depends nontrivially and sometimes counter-intuitively on the kinetics and mechanisms of photoswitching, particularly at the interface of two solvents, as well as on complex interactions with other surfactants. Understanding these complexities enables the design of new photosurfactant systems and their optimization toward responsive functions including triggered spreading, dewetting, and destabilization of droplets on solid and fluid surfaces.

7.
Microb Cell Fact ; 20(1): 199, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663313

RESUMO

BACKGROUND: Quantification of individual species in microbial co-cultures and consortia is critical to understanding and designing communities with prescribed functions. However, it is difficult to physically separate species or measure species-specific attributes in most multi-species systems. Anaerobic gut fungi (AGF) (Neocallimastigomycetes) are native to the rumen of large herbivores, where they exist as minority members among a wealth of prokaryotes. AGF have significant biotechnological potential owing to their diverse repertoire of potent lignocellulose-degrading carbohydrate-active enzymes (CAZymes), which indirectly bolsters activity of other rumen microbes through metabolic exchange. While decades of literature suggest that polysaccharide degradation and AGF growth are accelerated in co-culture with prokaryotes, particularly methanogens, methods have not been available to measure concentrations of individual species in co-culture. New methods to disentangle the contributions of AGF and rumen prokaryotes are sorely needed to calculate AGF growth rates and metabolic fluxes to prove this hypothesis and understand its causality for predictable co-culture design. RESULTS: We present a simple, microplate-based method to measure AGF and methanogen concentrations in co-culture based on fluorescence and absorbance spectroscopies. Using samples of < 2% of the co-culture volume, we demonstrate significant increases in AGF growth rate and xylan and glucose degradation rates in co-culture with methanogens relative to mono-culture. Further, we calculate significant differences in AGF metabolic fluxes in co-culture relative to mono-culture, namely increased flux through the energy-generating hydrogenosome organelle. While calculated fluxes highlight uncertainties in AGF primary metabolism that preclude definitive explanations for this shift, our method will enable steady-state fluxomic experiments to probe AGF metabolism in greater detail. CONCLUSIONS: The method we present to measure AGF and methanogen concentrations enables direct growth measurements and calculation of metabolic fluxes in co-culture. These metrics are critical to develop a quantitative understanding of interwoven rumen metabolism, as well as the impact of co-culture on polysaccharide degradation and metabolite production. The framework presented here can inspire new methods to probe systems beyond AGF and methanogens. Simple modifications to the method will likely extend its utility to co-cultures with more than two organisms or those grown on solid substrates to facilitate the design and deployment of microbial communities for bioproduction and beyond.


Assuntos
Técnicas de Cocultura/métodos , Fungos/crescimento & desenvolvimento , Rúmen/microbiologia , Anaerobiose , Animais , Metabolismo dos Carboidratos
8.
Biomed Microdevices ; 22(3): 52, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770358

RESUMO

Although microfluidic micro-electromechanical systems (MEMS) are well suited to investigate the effects of mechanical force on large populations of cells, their high-throughput capabilities cannot be fully leveraged without optimizing the experimental conditions of the fluid and particles flowing through them. Parameters such as flow velocity and particle size are known to affect the trajectories of particles in microfluidic systems and have been studied extensively, but the effects of temperature and buffer viscosity are not as well understood. In this paper, we explored the effects of these parameters on the timing of our own cell-impact device, the µHammer, by first tracking the velocity of polystyrene beads through the device and then visualizing the impact of these beads. Through these assays, we find that the timing of our device is sensitive to changes in the ratio of inertial forces to viscous forces that particles experience while traveling through the device. This sensitivity provides a set of parameters that can serve as a robust framework for optimizing device performance under various experimental conditions, without requiring extensive geometric redesigns. Using these tools, we were able to achieve an effective throughput over 360 beads/s with our device, demonstrating the potential of this framework to improve the consistency of microfluidic systems that rely on precise particle trajectories and timing.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microeletromecânicos/instrumentação , Soluções Tampão , Desenho de Equipamento , Microesferas , Tamanho da Partícula , Poliestirenos/química , Temperatura , Viscosidade
9.
Soft Matter ; 16(40): 9339-9346, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32936183

RESUMO

Marine mussel plaques are an exceptional model for wet adhesives. Despite advances in understanding their protein composition and strategies for molecular bonding, the process by which these soluble proteins are rapidly processed into load-bearing structures remains poorly understood. Here, we examine the effects of seawater pH on the time evolution of the internal microstructures in plaques harvested from Mytilus californianus. Experimentally, plaques deposited by mussels on glass and acrylic surfaces were collected immediately after foot retraction without plaque separation from the surface, placed into pH-adjusted artificial seawater for varying times, and characterized using scanning electron microscopy and tensile testing. We found a pH dependent transition from a liquid-like state to a porous solid within 30 min for pH ≥ 6.7; these plaques are load-bearing. By contrast, samples maintained at pH 3.0 showed no porosity and no measurable strength. Interestingly, we found cuticle development within 15 min regardless of pH, suggesting that cuticle formation occurs prior to pore assembly. Our results suggest that sea water infusion after deposition by and disengagement of the foot is critical to the rapid formation of internal structures, which in turn plays an important role in the plaques' mechanical performance.


Assuntos
Mytilus , Adesivos , Animais , Concentração de Íons de Hidrogênio , Proteínas , Água do Mar
10.
Soft Matter ; 16(17): 4192-4199, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32286589

RESUMO

We present a new approach to measuring cell-generated forces from the deformations of elastic microspheres embedded within multicellular aggregates. By directly fitting the measured sensor deformation to an analytical model based on experimental observations and invoking linear elasticity, we dramatically reduce the computational complexity of the problem, and directly obtain the full 3D mapping of surface stresses. Our approach imparts extraordinary computational efficiency, allowing tractions to be estimated within minutes and enabling rapid analysis of microsphere-based traction force microscopy data.


Assuntos
Comunicação Celular/fisiologia , Microscopia de Força Atômica/métodos , Tração/métodos , Simulação por Computador , Elasticidade , Microesferas , Modelos Biológicos , Teoria Quântica , Tensão Superficial
11.
Soft Matter ; 13(40): 7381-7388, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28972234

RESUMO

The proteinaceous byssal plaque-thread structures created by marine mussels exhibit extraordinary load-bearing capability. Although the nanoscopic protein interactions that support interfacial adhesion are increasingly understood, major mechanistic questions about how mussel plaques maintain toughness on supramolecular scales remain unanswered. This study explores the mechanical properties of whole mussel plaques subjected to repetitive loading cycles, with varied recovery times. Mechanical measurements were complemented with scanning electron microscopy to investigate strain-induced structural changes after yield. Multicyclic loading of plaques decreases their low-strain stiffness and introduces irreversible, strain-dependent plastic damage within the plaque microstructure. However, strain history does not compromise critical strength or maximum extension compared with plaques monotonically loaded to failure. These results suggest that a multiplicity of force transfer mechanisms between the thread and plaque-substrate interface allow the plaque-thread structure to accommodate a wide range of extensions as it continues to bear load. This improved understanding of the mussel system at micron-to-millimeter lengthscales offers strategies for including similar fail-safe mechanisms in the design of soft, tough and resilient synthetic structures.


Assuntos
Bivalves/fisiologia , Animais , Fenômenos Biomecânicos , Bivalves/anatomia & histologia , Teste de Materiais , Suporte de Carga
12.
Soft Matter ; 13(48): 9122-9131, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29192930

RESUMO

We report here that a dense liquid formed by spontaneous condensation, also known as simple coacervation, of a single mussel foot protein-3S-mimicking peptide exhibits properties critical for underwater adhesion. A structurally homogeneous coacervate is deposited on underwater surfaces as micrometer-thick layers, and, after compression, displays orders of magnitude higher underwater adhesion at 2 N m-1 than that reported from thin films of the most adhesive mussel-foot-derived peptides or their synthetic mimics. The increase in adhesion efficiency does not require nor rely on post-deposition curing or chemical processing, but rather represents an intrinsic physical property of the single-component coacervate. Its wet adhesive and rheological properties correlate with significant dehydration, tight peptide packing and restriction in peptide mobility. We suggest that such dense coacervate liquids represent an essential adaptation for the initial priming stages of mussel adhesive deposition, and provide a hitherto untapped design principle for synthetic underwater adhesives.

13.
Biochim Biophys Acta ; 1853(11 Pt B): 3015-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26225932

RESUMO

In this article, we will summarize recent progress in understanding the mechanical origins of rigidity, strength, resiliency and stress transmission in the MT cytoskeleton using reconstituted networks formed from purified components. We focus on the role of network architecture, crosslinker compliance and dynamics, and molecular determinants of single filament elasticity, while highlighting open questions and future directions for this work.


Assuntos
Elasticidade , Microtúbulos/química , Estresse Mecânico , Animais
14.
Opt Lett ; 41(10): 2386-9, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27177009

RESUMO

We report an improved method for calibrating the nonlinear region of a single-beam gradient optical trap. Through analysis of the position fluctuations of a trapped object that is displaced from the trap center by controlled flow we measure the local trap stiffness in both the linear and nonlinear regimes without knowledge of the magnitude of the applied external forces. This approach requires only knowledge of the system temperature, and is especially useful for measurements involving trapped objects of unknown size, or objects in a fluid of unknown viscosity.

15.
Soft Matter ; 11(34): 6832-9, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26223522

RESUMO

Mussels are well known for their ability to generate and maintain strong, long-lasting adhesive bonds under hostile conditions. Many prior studies attribute their adhesive strength to the strong chemical interactions between the holdfast and substrate. While chemical interactions are certainly important, adhesive performance is also determined by contact geometry, and understanding the coupling between chemical interactions and the plaque shape and mechanical properties is essential in deploying bioinspired strategies when engineering improved adhesives. To investigate how the shape and mechanical properties of the mussel's plaque contribute to its adhesive performance, we use a custom built load frame capable of fully characterizing the dynamics of the detachment. With this, we can pull on samples along any orientation, while at the same time measuring the resulting force and imaging the bulk deformations of the plaque as well as the holdfast-substrate interface where debonding occurs. We find that the force-induced yielding of the mussel plaque improves the bond strength by two orders of magnitude and that the holdfast shape improves bond strength by an additional order of magnitude as compared to other simple geometries. These results demonstrate that optimizing the contact geometry can play as important a role on adhesive performance as optimizing the chemical interactions as observed in other organisms and model systems.


Assuntos
Materiais Biomiméticos , Bivalves , Fenômenos Mecânicos , Adesividade , Animais , Fenômenos Biomecânicos , Vidro , Teste de Materiais
16.
Soft Matter ; 11(24): 4899-911, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26012737

RESUMO

We examine the bond-breaking dynamics of transiently cross-linked semiflexible networks using a single filament model in which that filament is peeled from an array of cross-linkers. We examine the effect of quenched disorder in the placement of the linkers along the filament and the effect of stochastic bond-breaking (assuming Bell model unbinding kinetics) on the dynamics of filament cross-linker dissociation and the statistics of ripping events. We find that bond forces decay exponentially away from the point of loading and that bond breaking proceeds sequentially down the linker array from the point of loading in a series of stochastic ripping events. We compare these theoretical predictions to the observed trajectories of large beads in a cross-linked microtubule network and identify the observed jumps of the bead with the linker rupture events predicted by the single filament model.


Assuntos
Microtúbulos/química , Modelos Teóricos , Elasticidade , Estresse Mecânico
17.
Curr Opin Cell Biol ; 19(1): 75-81, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17188855

RESUMO

Conventional kinesin and Eg5 are essential nanoscale motor proteins. Single-molecule and presteady-state kinetic experiments indicate that both motors use similar strategies to generate movement along microtubules, despite having distinctly different in vivo functions. Single molecules of kinesin, a long-distance cargo transporter, are highly processive, binding the microtubule and taking 100 or more sequential steps at velocities of up to 700 nm/s before dissociating, whereas Eg5, a motor active in mitotic spindle assembly, is also processive, but takes fewer steps at a slower rate. By dissecting the structural, biochemical and mechanical features of these proteins, we hope to learn how kinesin and Eg5 are optimized for their specific biological tasks, while gaining insight into how biochemical energy is converted into mechanical work.


Assuntos
Cinesinas/fisiologia , Microtúbulos/fisiologia , Animais , Fenômenos Biomecânicos , Dimerização , Ligação Proteica , Fuso Acromático/fisiologia
18.
Nat Cell Biol ; 8(5): 470-6, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16604065

RESUMO

Eg5, a member of the kinesin superfamily of microtubule-based motors, is essential for bipolar spindle assembly and maintenance during mitosis, yet little is known about the mechanisms by which it accomplishes these tasks. Here, we used an automated optical trapping apparatus in conjunction with a novel motility assay that employed chemically modified surfaces to probe the mechanochemistry of Eg5. Individual dimers, formed by a recombinant human construct Eg5-513-5His, stepped processively along microtubules in 8-nm increments, with short run lengths averaging approximately eight steps. By varying the applied load (with a force clamp) and the ATP concentration, we found that the velocity of Eg5 was slower and less sensitive to external load than that of conventional kinesin, possibly reflecting the distinct demands of spindle assembly as compared with vesicle transport. The Eg5-513-5His velocity data were described by a minimal, three-state model where a force-dependent transition follows nucleotide binding.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Mitose , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Bovinos , Dimerização , Histidina , Humanos , Cinética , Oligopeptídeos , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/metabolismo
19.
Soft Matter ; 9(3): 772-778, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24049545

RESUMO

Cellular biopolymers can exhibit significant compositional heterogeneities as a result of the non-uniform binding of associated proteins, the formation of microstructural defects during filament assembly, or the imperfect bundling of filaments into composite structures of variable diameter. These can lead to significant variations in the local mechanical properties of biopolymers along their length. Existing spectral analysis methods assume filament homogeneity and therefore report only a single average stiffness for the entire filament. However, understanding how local effects modulate biopolymer mechanics in a spatially resolved manner is essential to understanding how binding and bundling proteins regulate biopolymer stiffness and function in cellular contexts. Here, we present a new method to determine the spatially varying material properties of individual complex biopolymers from the observation of passive thermal fluctuations of the filament conformation. We develop new statistical mechanics-based approaches for heterogeneous filaments that estimate local bending elasticities as a function of the filament arc-length. We validate this methodology using simulated polymers with known stiffness distributions, and find excellent agreement between derived and expected values. We then determine the bending elasticity of microtubule filaments of variable composition generated by repeated rounds of tubulin polymerization using either GTP or GMPCPP, a nonhydrolyzable GTP analog. Again, we find excellent agreement between mechanical and compositional heterogeneities.

20.
Soft Matter ; 9(2): 383-393, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23577042

RESUMO

We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA