RESUMO
BACKGROUND: Helicobacter pylori (Hp) infects the stomach of 50% of the world's population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. METHODS: Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), ßIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. RESULTS: Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVß3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. CONCLUSIONS: OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.
Assuntos
Helicobacter pylori , Camundongos , Animais , Helicobacter pylori/metabolismo , Astrócitos , Urease/metabolismo , Urease/farmacologia , NF-kappa B/metabolismo , Fator B do Complemento/metabolismo , Fator B do Complemento/farmacologia , Modelos Animais de Doenças , Espectrometria de Massas em Tandem , NeurôniosRESUMO
Leptocarpha rivularis is a native South American plant used ancestrally by Mapuche people to treat gastrointestinal ailments. L. rivularis flower extracts are rich in molecules with therapeutic potential, including the sesquiterpene lactone leptocarpin, which displays cytotoxic effects against various cancer types in vitro. However, the combination of active molecules in these extracts could offer a hitherto unexplored potential for targeting cancer. In this study, we investigated the effect of L. rivularis flower extracts on the proliferation, survival, and spread parameters of gastric cancer cells in vitro. Gastric cancer (AGS and MKN-45) and normal immortalized (GES-1) cell lines were treated with different concentrations of L. rivularis flower extracts (DCM, Hex, EtOAc, and EtOH) and we determined the changes in proliferation (MTS assay, cell cycle analysis), cell viability/cytotoxicity (trypan blue exclusion assay, DEVDase activity, mitochondrial membrane potential MMP, and clonogenic ability), senescence (ß-galactosidase activity) and spread potential (invasion and migration assays using the Boyden chamber approach) in all these cells. The results showed that the DCM, EtOAc, and Hex extracts display a selective antitumoral effect in gastric cancer cells by affecting all the cancer parameters tested. These findings reveal an attractive antitumoral potential of L. rivularis flower extracts by targeting several acquired capabilities of cancer cells.
Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular TumoralRESUMO
The cancer-preventive agent Resveratrol (RSV) [3,5,4'-trihydroxytrans-stilbene] is a widely recognized antioxidant molecule with antitumoral potential against several types of cancers, including prostate, hepatic, breast, skin, colorectal, and pancreatic. Herein, we studied the effect of RSV on the cell viability and invasion potential of gastric cancer cells. AGS and MKN45 cells were treated with different doses of RSV (0-200 µM) for 24 h. Cell viability was determined using the Sulphorhodamine B dye (SRB) assay. For invasion assays, gastric cells were pre-treated with RSV (5-25 µM) for 24 h and then seeded in a Transwell chamber with coating Matrigel. The results obtained showed that RSV inhibited invasion potential in both cell lines. Moreover, to elucidate the mechanism implicated in this process, we analyzed the effects of RSV on SOD, heparanase, and NF-κB transcriptional activity. The results indicated that RSV increased SOD activity in a dose-dependent manner. Conversely, RSV significantly reduced the DNA-binding activity of NF-κB and the enzymatic activity of heparanase in similar conditions, which was determined using ELISA-like assays. In summary, these results show that RSV increases SOD activity but decreases NF-kB transcriptional activity and heparanase enzymatic activity, which correlates with the attenuation of invasion potential in gastric cancer cells. To our knowledge, no previous study has described the effect of RSV on heparanase activity. This article proposes that heparanase could be a key effector in the invasive events occurring during gastric cancer metastasis.
Assuntos
Resveratrol , Neoplasias Gástricas , Linhagem Celular Tumoral , Humanos , NF-kappa B/metabolismo , Invasividade Neoplásica , Resveratrol/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Superóxido DismutaseRESUMO
Survivin (BIRC5) is an anti-apoptotic protein that is important in cancer. Mechanisms responsible for controlling Survivin levels in cells include transcriptional regulation and modulation of protein stability via post-translational modifications; however to date, translational control has been poorly studied. Here, we focused particularly on the primary control elements present in the Survivin 5' untranslated region (5'UTR). Bioinformatic analysis of ribosome occupancy on the Survivin 5'UTR revealed the presence of elongating ribosomes upstream of the canonical initiator AUG, suggesting an alternative upstream initiator AUG (uAUG) might exist. This uAUG was found out-of-frame at position -71 and appeared as a conserved element in mammals. RACE analysis revealed different transcriptional start sites for BIRC5, which indicated that translational control by this uAUG is restricted to longer 5'UTR variants. We studied the activity of the uAUG in different cell types by cloning the Survivin 5'UTR DNA sequence (wild-type and mutated variants) upstream of renilla luciferase (RLuc) into a pcDNA3 plasmid. Changes in RLuc activity were determined by luminescence assays and Western blotting. Results showed that when this uAUG was mutated to AUU or AGG in the cloned Survivin 5'UTR, RLuc activity was significantly increased. Similar results were obtained when uAUG was positioned inframe with the RLuc initiator AUG. Immunodetection of Renilla (35 kDa) by Western blotting revealed the presence of a second band (37 kDa approximately) in cells transfected with the Inframe reporter constructs, indicating that the uAUG was functional in our experimental conditions. In conclusion, our experimental data demonstrate the presence of an alternative and inhibitory initiator uAUG in the Survivin 5' UTR. This inhibitory uAUG may help understanding how Survivin expression is downregulated under physiological or pathological conditions.
Assuntos
Regiões 5' não Traduzidas/genética , Códon de Iniciação/genética , Survivina/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Sequência Conservada/genética , Células HEK293 , Humanos , Luciferases/metabolismo , Mamíferos/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genéticaRESUMO
Nerve Growth Factor (NGF) and its high-affinity receptor tropomyosin receptor kinase A (TRKA) increase their expression during the progression of epithelial ovarian cancer (EOC), promoting cell proliferation and angiogenesis through several oncogenic proteins, such as c-MYC and vascular endothelial growth factor (VEGF). The expression of these proteins is controlled by microRNAs (miRs), such as miR-145, whose dysregulation has been related to cancer. The aims of this work were to evaluate in EOC cells whether NGF/TRKA decreases miR-145 levels, and the effect of miR-145 upregulation. The levels of miR-145-5p were assessed by qPCR in ovarian biopsies and ovarian cell lines (human ovarian surface epithelial cells (HOSE), A2780 and SKOV3) stimulated with NGF. Overexpression of miR-145 in ovarian cells was used to evaluate cell proliferation, migration, invasion, c-MYC and VEGF protein levels, as well as tumor formation and metastasis in vivo. In EOC samples, miR-145-5p levels were lower than in epithelial ovarian tumors. Overexpression of miR-145 decreased cell proliferation, migration and invasion of EOC cells, changes that were concomitant with the decrease in c-MYC and VEGF protein levels. We observed decreased tumor formation and suppressed metastasis behavior in mice injected with EOC cells that overexpressed miR-145. As expected, ovarian cell lines stimulated with NGF diminished miR-145-5p transcription and abundance. These results suggest that the tumoral effects of NGF/TRKA depend on the regulation of miR-145-5p levels in EOC cells, and that its upregulation could be used as a possible therapeutic strategy for EOC.
Assuntos
Carcinoma/metabolismo , MicroRNAs/genética , Fator de Crescimento Neural/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor trkA/metabolismo , Idoso , Carcinoma/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND: The leaves of Kalanchoe pinnata (Lam.) Pers. (K. pinnata), a succulent plant native to tropical regions, are used as a medicinal alternative against cancer in several countries worldwide; however, its therapeutic potential to fight cancer has been little addressed. In this study, we analyzed the phytochemical content, antioxidant capacity, and selectivity of K. pinnata leaf ethanolic extract against different human cancer cell lines in vitro. METHODOLOGY: This study subjected the ethanolic extract to enzymatic assays to quantify the phytochemical content (phenolics, flavonoids, and anthraquinones) and its radical scavenging and iron-reducing capacities. Also, the phytoconstituents and major phenolic compounds present in the extract's subfractions were identified by GC-MS, HPLC, and NMR. Human cancer (MCF-7, PC-3, HT-29) and normal colon (CoN) cell lines were treated with different concentrations of K. pinnata leaf ethanolic extract, and the changes in cell proliferation (sulforhodamine B assay), caspases activity (FITC-VAD-FMK reporter), mitochondrial membrane potential (MMP, rhodamine 123 assay), chromatin condensation/fragmentation (Hoechst 33342 stain), and ROS generation (DCFH2 probe assay) were assessed. RESULTS: The results showed that the K. pinnata leaf ethanolic extract is rich in phytoconstituents with therapeutic potential, including phenols (quercetin and kaempferol), flavonoids, fatty acid esters (34.6% of the total composition), 1- triacontanol and sterols (ergosterol and stigmasterol, 15.4% of the total composition); however, it presents a poor content of antioxidant molecules (IC50 = 27.6 mg/mL for H2O2 scavenging activity vs. 2.86 mg/mL in the case of Trolox). Notably, the extract inhibited cell proliferation and reduced MMP in all human cell lines tested but showed selectivity for HT-29 colon cancer cells compared to CoN normal cells (SI = 8.4). Furthermore, ROS generation, caspase activity, and chromatin condensation/fragmentation were augmented significantly in cancer-derived cell lines, indicating a selective cytotoxic effect. CONCLUSION: These findings reveal that the K. pinnata leaf ethanolic extract contains several bioactive molecules with therapeutic potential, capable of displaying selective cytotoxicity in different human cancer cell lines.
Assuntos
Apoptose , Kalanchoe , Extratos Vegetais , Folhas de Planta , Espécies Reativas de Oxigênio , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Kalanchoe/química , Folhas de Planta/química , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologiaRESUMO
Chronic Helicobacter pylori (H. pylori) infection is considered the main risk factor for the development of gastric cancer. Pathophysiological changes in the gastric mucosa initiated by this bacterium can persist even after pharmacological eradication and are likely attributable also to changes induced in non-infected cells as a consequence of intercellular communication via extracellular vesicles (EVs). To better understand what such changes might entail, we isolated EVs from immortalized normal gastric GES-1 cells infected (EVHp+) or not with H. pylori (EVHp-) by ultracentrifugation and characterized them. Infection of GES-1 cells with H. pylori significantly increased the release of EVs and slightly decreased the EV mean size. Incubation with EVHp+ for 24 h decreased the viability of GES-1 cells, but increased the levels of IL-23 in GES-1 cells, as well as the migration of GES-1 and gastric cancer AGS cells. Furthermore, incubation of GES-1 and AGS cells with EVHp+, but not with EVHp-, promoted cell invasion and trans-endothelial migration in vitro. Moreover, stimulation of endothelial EA.hy926 cells for 16 h with EVHp+ promoted the formation of linked networks. Finally, analysis by mass spectrometry identified proteins uniquely present and others enriched in EVHp+ compared to EVHp-, several of which are known targets of hypoxia induced factor-1α (HIF-1α) that may promote the acquisition of traits important for the genesis/progression of gastric pre-neoplastic changes associated with H. pylori infection. In conclusion, the harmful effects of H. pylori infection associated with the development of gastric malignancies may spread via EVs to non-infected areas in the early and later stages of gastric carcinogenesis.
RESUMO
Epithelial ovarian cancer (EOC) is one of the deadliest gynaecological malignancies. The late diagnosis is frequent due to the absence of specific symptomatology and the molecular complexity of the disease, which includes a high angiogenesis potential. The first-line treatment is based on optimal debulking surgery following chemotherapy with platinum/gemcitabine and taxane compounds. During the last years, anti-angiogenic therapy and poly adenosine diphosphate-ribose polymerases (PARP)-inhibitors were introduced in therapeutic schemes. Several studies have shown that these drugs increase the progression-free survival and overall survival of patients with ovarian cancer, but the identification of patients who have the greatest benefits is still under investigation. In the present review, we discuss about the molecular characteristics of the disease, the recent evidence of approved treatments and the new possible complementary approaches, focusing on drug repurposing, non-coding RNAs, and nanomedicine as a new method for drug delivery.
RESUMO
BACKGROUND: Carbapenemase-producing strains of Klebsiella pneumoniae (KPC+) are one of the multi-drug resistant bacteria with the highest risk for human health. The colistin is the only antibiotic option against KPC+; however, due to its emerging resistance, therapies such as antimicrobial photodynamic inactivation (aPDI), are needed. APDI uses photosensitizer compounds (PS) to produce light-activated local oxidative stress (photooxidative stress). Within the PSs variety, cationic PSs are thought to interact closely with the bacterial envelope producing an increased cytotoxic effect. METHODOLOGY: The Ir(III)-based cationic compounds, PSIR-3, and PSIR-4 were tested on aPDI and compared to a positive control of Ru(II)-based PS. The PSIR-3 and PSIR-4 abilities to inhibit the growth of KPC+ and KPC- bacteria were evaluated, under 17 µW/cm2 photon flux. Also, the cytotoxicity of the PSs in eukaryotic cells was determined by MTS and trypan blue exclusion assays. RESULTS: After light-activation, only the PSIR-3 compound inhibited 3 log10 (> 99.9 %) bacterial growth in a minimum dose of 4 µg/mL with the lethality of 30 min of light exposure. Outstandingly, the compound PSIR-3 showed a synergistic effect with imipenem, significantly increasing the bacterial inhibition of KPC+ to 6 log10, which was not observed in the control compound. In normal immortalized gastric cell line GES-1, the compound PSIR-3 showed no significant cytotoxicity, although increased cytotoxicity under light-activation was observed on gastric cancer-derived cells AGS. CONCLUSION: The PSIR-3 compound produces an efficient aPDI, killing K. pneumoniae KPC+- strains, and increasing its susceptibility in conjunction with imipenem, exhibiting low cytotoxicity to normal eukaryotic cells.
Assuntos
Klebsiella pneumoniae , Fotoquimioterapia , Antibacterianos/farmacologia , Humanos , Imipenem/farmacologia , Ligantes , Testes de Sensibilidade Microbiana , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologiaRESUMO
BACKGROUND: Bacteria prevalent in the hospital environment have developed multi-drug resistance (MDR), such as the carbapenemase-producing Klebsiella pneumoniae (KPC+). Photodynamic therapy (PDT), which uses light-activated photosensitizer compounds (PSs), has emerged as an alternative to antibiotics. Cationic-PSs have a better bactericidal effect by interacting more closely with the bacterial envelope. METHODS: Two PSs based on cationic Ir (III) compounds (PSIR-1 and PSIR-2) were studied in photodynamic therapy against KPC+ and KPC- bacteria, and their PDT activities were compared with a cationic Ru(II) control compound (PS -Ru). RESULTS: Similar to the behavior of PS-Ru control, the cytotoxicity of PSIR-1 and 2, showing a bacterial inhibition growth of more than 3log10 (>99.9 % inactivation), at light fluency of 17 µW/cm2. The minimal dose to accomplish the inhibition in 3log10 was determined for PSIR-1 and PSIR-2 at 4 and 2 µg/mL, respectively and the lethality was 30 min of light exposure for both compounds. Notably, the PSIR-1 and 2 compounds showed a synergistic effect with imipenem by significantly increasing (up to 6 log10) the photodynamic bactericidal effect for KPC+ strains. This synergy is specific for PSIR-1 and 2 compounds, since it was not observed with the PS-Ru control. On normal gastric cells GES-1, both PSIR-1 and 2 showed significant cytotoxicity; however, the highest cytotoxicity was found in gastric tumor cells (AGS). CONCLUSION: The compounds PSIR-1 and 2 are bactericidal photosensitizers and represent a promising alternative for complementing the treatment of infections by MDR bacteria since they should not be toxic in the dark.
Assuntos
Klebsiella pneumoniae , Fotoquimioterapia , Antibacterianos/farmacologia , Imipenem/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , beta-LactamasesRESUMO
Caveolin-1 (CAV1) is a well-established nitric oxide synthase inhibitor, whose function as a tumor suppressor is favored by, but not entirely dependent on, the presence of E-cadherin. Tumors are frequently hypoxic and the activation of the hypoxia-inducible factor-1α (HIF1α) promotes tumor growth. HIF1α is regulated by several post-translational modifications, including S-nitrosylation. Here, we evaluate the mechanisms underlying tumor suppression by CAV1 in cancer cells lacking E-cadherin in hypoxia. Our main findings are that CAV1 reduced HIF activity and Vascular Endothelial Growth Factor expression in vitro and in vivo. This effect was neither due to reduced HIF1α protein stability or reduced nuclear translocation. Instead, HIF1α S-nitrosylation observed in hypoxia was diminished by the presence of CAV1, and nitric oxide synthase (NOS) inhibition by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) reduced HIF1α transcriptional activity in cells to the same extent as observed upon CAV1 expression. Additionally, arginase inhibition by (S)-(2-Boronoethyl)-L-cysteine (BEC) partially rescued cells from the CAV1-mediated suppression of HIF1α transcriptional activity. In vivo, CAV1-mediated tumor suppression was dependent on NOS activity. In summary, CAV1-dependent tumor suppression in the absence of E-cadherin is linked to reduced HIF1α transcriptional activity via diminished NOS-mediated HIF1α S-nitrosylation.
RESUMO
Epithelial ovarian cancer (EOC) is a lethal gynaecological neoplasm characterized by rapid growth and angiogenesis. Nerve growth factor (NGF) and its high affinity receptor tropomyosin receptor kinase A (TRKA) contribute to EOC progression by increasing the expression of c-MYC, survivin and vascular endothelial growth factor (VEGF) along with a decrease in microRNAs (miR) 23b and 145. We previously reported that metformin prevents NGF-induced proliferation and angiogenic potential of EOC cells. In this study, we sought to obtain a better understanding of the mechanism(s) by which metformin blocks these NGF-induced effects in EOC cells. Human ovarian surface epithelial (HOSE) and EOC (A2780/SKOV3) cells were stimulated with NGF and/or metformin to assess the expression of c-MYC, ß-catenin, survivin and VEGF and the abundance of the tumor suppressor miRs 23b and 145. Metformin decreased the NGF-induced transcriptional activity of MYC and ß-catenin/T-cell factor/lymphoid enhancer-binding factor (TCF-Lef), as well as the expression of c-MYC, survivin and VEGF in EOC cells, while it increased miR-23b and miR-145 levels. The preliminary analysis of ovarian biopsies from women users or non-users of metformin was consistent with these in vitro results. Our observations shed light on the mechanisms by which metformin may suppress tumour growth in EOC and suggest that metformin should be considered as a possible complementary therapy in EOC treatment.
RESUMO
The emergence of multi-drug resistance for pathogenic bacteria is one of the most pressing global threats to human health in the 21st century. Hence, the availability of new treatment becomes indispensable to prevent morbidity and mortality caused by infectious agents. This article reviews the antimicrobial properties of photodynamic therapy (PDT), which is based on the use of photosensitizers compounds (PSs). The PSs are non-toxic small molecules, which induce oxidative stress only under excitation with light. Then, the PDT has the advantage to be locally activated using phototherapy devices. We focus on PDT for the Klebsiella pneumoniae, as an example of Gram-negative bacteria, due to its relevance as an agent of health-associated infections (HAI) and a multi-drug resistant bacteria. K. pneumoniae is a fermentative bacillus, member of the Enterobacteriaceae family, which is most commonly associated with producing infection of the urinary tract (UTI) and pneumonia. K. pneumoniae infections may occur in deep organs such as bladder or lungs tissues; therefore, activating light must get access or penetrate tissues with sufficient power to produce effective PDT. Consequently, the rationale for selecting the most appropriate PSs, as well as photodynamic devices and photon fluence doses, were reviewed. Also, the mechanisms by which PDT activates the immune system and its importance to eradicate the infection successfully, are discussed.
Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , HumanosRESUMO
Chronic Helicobacter pylori infection increases the risk of gastric cancer and induction of hypoxia-induced factor (HIF), which is frequently associated with the development and progression of several types of cancer. We recently showed that H. pylori activation of the PI3K-AKT-mTOR pathway in gastric cells increased HIF-1α expression. Here, we identified the H. pylori virulence factor responsible for HIF-1α induction. A mutant of the H. pylori 84-183 strain was identified with reduced ability to induce HIF-1α. Coomassie blue staining of extracts from these bacteria separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed poor expression of urease subunits that correlated with reduced urease activity. This finding was confirmed in the 26695 strain, where urease mutants were unable to induce HIF-1α expression. Of note, HIF-1α induction was also observed in the presence of the urease inhibitor acetohydroxamic acid at concentrations (of 20 mM) that abrogated urease activity in bacterial culture supernatants, suggesting that enzymatic activity of the urease is not required for HIF-1α induction. Finally, the pre-incubation of the human gastric adenocarcinoma cell line AGS with blocking antibodies against Toll-like receptor-2 (TLR2), but not TLR4, prevented HIF-1α induction. In summary, these results reveal a hitherto unexpected role for the urease protein in HIF-1α induction via TLR2 activation following H. pylori infection of gastric cells.
RESUMO
Epithelial ovarian cancer (EOC) is a lethal gynecological neoplasia characterized by extensive angiogenesis and overexpression of nerve growth factor (NGF). Here, we investigated the mechanism by which NGF increases vascular endothelial growth factor (VEGF) expression and the vasculogenic potential of EOC cells, as well as the contribution of the cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) signaling axis to these events. EOC biopsies and ovarian cell lines were used to determine COX-2 and PGE2 levels, as well as those of the potentially pro-angiogenic proteins c-MYC (a member of the Myc transcription factors family), survivin, and ß-catenin. We observed that COX-2 and survivin protein levels increased during EOC progression. In the EOC cell lines, NGF increased the COX-2 and PGE2 levels. In addition, NGF increased survivin, c-MYC, and VEGF protein levels, as well as the transcriptional activity of c-MYC and ß-catenin/T-cell factor/lymphoid enhancer-binding factor (TCF-Lef) in a Tropomyosin receptor kinase A (TRKA)-dependent manner. Also, COX-2 inhibition prevented the NGF-induced increases in these proteins and reduced the angiogenic score of endothelial cells stimulated with conditioned media from EOC cells. In summary, we show here that the pro-angiogenic effect of NGF in EOC depends on the COX-2/PGE2 signaling axis. Thus, inhibition COX-2/PGE2 signaling will likely be beneficial in the treatment of EOC.
RESUMO
: The renin-angiotensin receptor AT2R controls systemic blood pressure and is also suggested to modulate metastasis of cancer cells. However, in the latter case, the mechanisms involved downstream of AT2R remain to be defined. We recently described a novel Caveolin-1(CAV1)/Ras-related protein 5A (Rab5)/Ras-related C3 botulinum toxin substrate 1 (Rac1) signaling axis that promotes metastasis in melanoma, colon, and breast cancer cells. Here, we evaluated whether the antimetastatic effect of AT2R is connected to inhibition of this pathway. We found that murine melanoma B16F10 cells expressed AT2R, while MDAMB-231 human breast cancer cells did not. AT2R activation blocked migration, transendothelial migration, and metastasis of B16F10(cav-1) cells, and this effect was lost when AT2R was silenced. Additionally, AT2R activation reduced transendothelial migration of A375 human melanoma cells expressing CAV1. The relevance of AT2R was further underscored by showing that overexpression of the AT2R in MDA-MB-231 cells decreased migration. Moreover, AT2R activation increased non-receptor protein tyrosine phosphatase 1B (PTP1B) activity, decreased phosphorylation of CAV1 on tyrosine-14 as well as Rab5/Rac1 activity, and reduced lung metastasis of B16F10(cav-1) cells in C57BL/6 mice. Thus, AT2R activation reduces migration, invasion, and metastasis of cancer cells by PTP1B-mediated CAV1 dephosphorylation and inhibition of the CAV1/Rab5/Rac-1 pathway. In doing so, these observations open up interesting, novel therapeutic opportunities to treat metastatic cancer disease.
RESUMO
BACKGROUND: The objective of the study was to determine the relationship between Survivin and Reprimo transcript/protein expression levels, and gastric cancer outcome. METHODS: In silico correlations between an agnostic set of twelve p53-dependent apoptosis and cell-cycle genes were explored in the gastric adenocarcinoma TCGA database, using cBioPortal. Findings were validated by regression analysis of RNAseq data. Separate regression analyses were performed to assess the impact of p53 status on Survivin and Reprimo. Quantitative reverse-transcription PCR (RT-qPCR) and immunohistochemistry confirmed in silico findings on fresh-frozen and paraffin-embedded gastric cancer tissues, respectively. Wild-type (AGS, SNU-1) and mutated p53 (NCI-N87) cell lines transfected with pEGFP-Survivin or pCMV6-Reprimo were evaluated by RT-qPCR and Western blotting. Kaplan-Meier method and Long-Rank test were used to assess differences in patient outcome. RESULTS: cBioPortal analysis revealed an inverse correlation between Survivin and Reprimo expression (Pearson's r= -0.3, Spearman's ρ= -0.55). RNAseq analyses confirmed these findings (Spearman's ρ= -0.37, p<4.2e-09) and revealed p53 dependence in linear regression models (p<0.05). mRNA and protein levels validated these observations in clinical samples (p<0.001). In vitro analysis in cell lines demonstrated that increasing Survivin reduced Reprimo, while increasing Reprimo reduced Survivin expression, but only did so in p53 wild-type gastric cells (p<0.05). Survivin-positive but Reprimo-negative patients displayed shorter overall survival rates (p=0.047, Long Rank Test) (HR=0.32; 95%IC: 0.11-0.97; p=0.044). CONCLUSIONS: TCGA RNAseq data analysis, evaluation of clinical samples and studies in cell lines identified an inverse relationship between Survivin and Reprimo. Elevated Survivin and reduced Reprimo protein expression correlated with poor patient prognosis in gastric cancer.
RESUMO
Helicobacter pylori (H. pylori) infection is the major risk factor associated with the development of gastric cancer. The transition from normal mucosa to non-atrophic gastritis, triggered primarily by H. pylori infection, initiates precancerous lesions which may then progress to atrophic gastritis and intestinal metaplasia. Further progression to dysplasia and gastric cancer is generally believed to be attributable to processes that no longer require the presence of H. pylori. The responses that develop upon H. pylori infection are directly mediated through the action of bacterial virulence factors, which drive the initial events associated with transformation of infected gastric cells. Besides genetic and to date poorly defined environmental factors, alterations in gastric cell stress-adaptive mechanisms due to H. pylori appear to be crucial during chronic infection and gastric disease progression. Firstly, H. pylori infection promotes gastric cell death and reduced epithelial cell turnover in the majority of infected cells, resulting in primary tissue lesions associated with an initial inflammatory response. However, in the remaining gastric cell population, adaptive responses are induced that increase cell survival and proliferation, resulting in the acquisition of potentially malignant characteristics that may lead to precancerous gastric lesions. Thus, deregulation of these intrinsic survival-related responses to H. pylori infection emerge as potential culprits in promoting disease progression. This review will highlight the most relevant cellular adaptive mechanisms triggered upon H. pylori infection, including endoplasmic reticulum stress and the unfolded protein response, autophagy, oxidative stress, and inflammation, together with a subsequent discussion on how these factors may participate in the progression of a precancerous lesion. Finally, this review will shed light on how these mechanisms may be exploited as pharmacological targets, in the perspective of opening up new therapeutic alternatives for non-invasive risk control in gastric cancer.