Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(40): e2302996120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748053

RESUMO

Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfatos Açúcares , Arabidopsis/genética , Trealose , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/genética , Proteínas de Arabidopsis/genética
2.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38535895

RESUMO

Fluorescent proteins (FPs) have always been a crucial part of molecular research in life sciences, including the research into the human fungal pathogen Candida albicans, but have obvious shortcomings such as their relatively large size and long maturation time. However, the next generation of FPs overcome these issues and rely on the binding of a fluorogen for the protein to become fluorescently active. This generation of FPs includes the improved version of Fluorescence activating and Absorption Shifting Tag (iFAST). The binding between the fluorogen and the iFAST protein is reversible, thus resulting in reversible fluorescence. The fluorogens of iFAST are analogues of 4-hydroxylbenzylidene-rhodanine (HBR). These HBR analogues differ in spectral properties depending on functional group substitutions, which gives the iFAST system flexibility in terms of absorbance and emission maxima. In this work we describe and illustrate the application of iFAST as a protein tag and its reversible multi-colour characteristics in C. albicans.


Assuntos
Candida albicans , Rodanina , Humanos , Cor
3.
BMC Microbiol ; 24(1): 66, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413885

RESUMO

BACKGROUND: Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS: A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS: The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION: This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Superóxido Dismutase-1 , Virulência
4.
Plant Mol Biol ; 108(6): 531-547, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088230

RESUMO

KEY MESSAGE: Alternative translation initiation of the unique Arabidopsis trehalase gene allows for the production of two isoforms with different subcellular localization, providing enzyme access to both intra- and extra-cellular trehalose. The trehalose-hydrolyzing enzyme trehalase mediates drought stress tolerance in Arabidopsis thaliana by controlling ABA-induced stomatal closure. We now report the existence of two trehalase isoforms, produced from a single transcript by alternative translation initiation. The longer full-length N-glycosylated isoform (AtTRE1L) localizes in the plasma membrane with the catalytic domain in the apoplast. The shorter isoform (AtTRE1S) lacks the transmembrane domain and localizes in the cytoplasm and nucleus. The two isoforms can physically interact and this interaction affects localization of AtTRE1S. Consistent with their role in plant drought stress tolerance, both isoforms are activated by AtCPK10, a stress-induced calcium-dependent guard cell protein kinase. Transgenic plants expressing either isoform indicate that both can mediate ABA-induced stomatal closure in response to drought stress but that the short (cytoplasmic/nuclear) isoform, enriched in those conditions, is significantly more effective.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas , Plantas Geneticamente Modificadas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estresse Fisiológico/genética , Trealase/genética , Trealase/metabolismo , Trealase/farmacologia
5.
PLoS Pathog ; 16(5): e1008478, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32437438

RESUMO

Successful human colonizers such as Candida pathogens have evolved distinct strategies to survive and proliferate within the human host. These include sophisticated mechanisms to evade immune surveillance and adapt to constantly changing host microenvironments where nutrient limitation, pH fluctuations, oxygen deprivation, changes in temperature, or exposure to oxidative, nitrosative, and cationic stresses may occur. Here, we review the current knowledge and recent findings highlighting the remarkable ability of medically important Candida species to overcome a broad range of host-imposed constraints and how this directly affects their physiology and pathogenicity. We also consider the impact of these adaptation mechanisms on immune recognition, biofilm formation, and antifungal drug resistance, as these pathogens often exploit specific host constraints to establish a successful infection. Recent studies of adaptive responses to physiological niches have improved our understanding of the mechanisms established by fungal pathogens to evade the immune system and colonize the host, which may facilitate the design of innovative diagnostic tests and therapeutic approaches for Candida infections.


Assuntos
Adaptação Fisiológica/imunologia , Antifúngicos/uso terapêutico , Candida/fisiologia , Candidíase , Farmacorresistência Fúngica/imunologia , Interações Hospedeiro-Parasita/imunologia , Candidíase/tratamento farmacológico , Candidíase/imunologia , Candidíase/patologia , Humanos
6.
Fish Shellfish Immunol ; 131: 1343-1351, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216228

RESUMO

In the present research, in order to screen out the best candidates from 12 different EOCs, we proposed three in vivo screening methods, namely the screening method of bioluminescence of V. campbellii associated with brine shrimp, regrowth performance of V. campbellii, and immune gene expression of brine shrimp without challenge. Our result showed that challenged with V. campbellii at 107 cells/mL, the survival of the brine shrimp at 48 h was significantly increased after treatment with the EOCs (at 0.0005%, v/v) of 4-allylanisole, R-(+)-limonene, S-(-)-limonene, (-)-terpinen-4-ol, (±)-citronellal, citral, trans-cinnamaldehyde and (+)-carvone, compared to the positive control group. Also, it was observed that the EOCs- of 4-allylanisloe, R-(+)-limonene, S-(-)-limonene, (-)-ß-pinene, geraniol, (±)-citronellal, citral, trans-cinnamaldehyde and (+)-carvone decreased significantly the in vivo bioluminescence of V. campbellii at 36 h after Vibrio exposure. The regrowth assay showed that independently from incubation time (1, 12 or 24 h), no difference was observed in the regrowth curve in all EOC treatment groups compared to the positive control group. The dscam gene expression in the (±)-citronellal group, and the sod gene in the citral group were observed to be significantly higher than in the negative control at 24 h, respectively. However, most of the immune genes were down-regulated in the EOC groups. Combining the survival data at 48 h with the bioluminescence result at 36 h, it was noted that the survival rate of brine shrimp was moderately correlated with in vivo bioluminescence of V. campbellii. The results indicate that the approach of determining in vivo bioluminescence of V. campbellii is a moderately reliable, fastest, and cheapest screening method for EOCs. As the regrowth performance assay of V. campbellii, and the immune genes expression assay of brine shrimp without challenge cannot predict Artemia survival properly, they cannot be used as screening methods for EOCs. Moreover, the immune genes expression assay is relatively slow, time-consuming and costly.


Assuntos
Óleos Voláteis , Vibrioses , Vibrio , Animais , Artemia , Limoneno/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Vibrioses/veterinária , Vibrio/fisiologia
8.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071169

RESUMO

Polygodial is a "hot" peppery-tasting sesquiterpenoid that was first described for its anti-feedant activity against African armyworms. Using the haploid deletion mutant library of Saccharomyces cerevisiae, a genome-wide mutant screen was performed to shed more light on polygodial's antifungal mechanism of action. We identified 66 deletion strains that were hypersensitive and 47 that were highly resistant to polygodial treatment. Among the hypersensitive strains, an enrichment was found for genes required for vacuolar acidification, amino acid biosynthesis, nucleosome mobilization, the transcription mediator complex, autophagy and vesicular trafficking, while the resistant strains were enriched for genes encoding cytoskeleton-binding proteins, ribosomal proteins, mitochondrial matrix proteins, components of the heme activator protein (HAP) complex, and known regulators of the target of rapamycin complex 1 (TORC1) signaling. WE confirm that polygodial triggers a dose-dependent vacuolar alkalinization and that it increases Ca2+ influx and inhibits glucose-induced Ca2+ signaling. Moreover, we provide evidence suggesting that TORC1 signaling and its protective agent ubiquitin play a central role in polygodial resistance, suggesting that they can be targeted by polygodial either directly or via altered Ca2+ homeostasis.


Assuntos
Antifúngicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Antifúngicos/química , Cálcio , Farmacorresistência Fúngica/genética , Homeostase/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Testes de Sensibilidade Microbiana , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Nucleossomos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras
9.
PLoS Pathog ; 19(5): e1011361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200232

Assuntos
Microbiota , Vitaminas
10.
PLoS Pathog ; 14(10): e1007301, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30335865

RESUMO

Persister cells are a small subpopulation within fungal biofilms that are highly resistant to high concentrations of antifungals and therefore most likely contribute to the resistance and recalcitrance of biofilm infections. Moreover, this subpopulation is defined as a nongrowing, phenotypic variant of wild-type cells that can survive high doses of antifungals. There are high degrees of heterogeneity and plasticity associated with biofilm formation, resulting in a strong variation in the amount of persister cells. The fraction of these cells in fungal biofilms also appear to be dependent on the type of substrate. The cells can be observed immediately after their adhesion to that substrate, which makes up the initial step of biofilm formation. Thus far, persister cells have primarily been studied in Candida spp. These fungi are the fourth most common cause of nosocomial systemic infections in the United States, with C. albicans being the most prevalent species. Remarkably, persisters exhibit characteristics of a dormant state similar to what is observed in cells deprived of glucose. This dormant state, together with attachment to a substrate, appears to provide the cells with characteristics that help them overcome the challenges with fungicidal drugs such as amphotericin B (AmB). AmB is known to induce apoptosis, and persister cells are able to cope with the increase in reactive oxygen species (ROS) by activating stress response pathways and the accumulation of high amounts of glycogen and trehalose-two known stress-protecting molecules. In this review, we discuss the molecular pathways that are involved in persister cell formation in fungal species and highlight that the eradication of persister cells could lead to a strong reduction of treatment failure in a clinical setting.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Candidíase/microbiologia , Infecção Hospitalar/microbiologia , Farmacorresistência Fúngica Múltipla , Biofilmes/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Candidíase/tratamento farmacológico , Infecção Hospitalar/tratamento farmacológico , Humanos
11.
Nucleic Acids Res ; 46(14): 6935-6949, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29982705

RESUMO

The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans. We have generated an ORFeome collection composed of 5099 ORFs cloned in a Gateway™ donor vector, representing 83% of the currently annotated coding sequences of C. albicans. Sequencing data of the cloned ORFs are available in the CandidaOrfDB database at http://candidaorfeome.eu. We also engineered 49 expression vectors with a choice of promoters, tags and selection markers and demonstrated their applicability to the study of target ORFs transferred from the C. albicans ORFeome. In addition, the use of the ORFeome in the detection of protein-protein interaction was demonstrated. Mating-compatible strains as well as Gateway™-compatible two-hybrid vectors were engineered, validated and used in a proof of concept experiment. These unique and valuable resources should greatly facilitate future functional studies in C. albicans and the elucidation of mechanisms that underlie its pathogenicity.


Assuntos
Candida albicans/genética , Fases de Leitura Aberta , Candida albicans/patogenicidade , Bases de Dados de Ácidos Nucleicos , Vetores Genéticos , Genômica , Mapeamento de Interação de Proteínas
12.
Drug Resist Updat ; 42: 22-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822675

RESUMO

The difficulty of manipulation and limited availability of genetic tools for use in many pathogenic fungi hamper fast and adequate investigation of cellular metabolism and consequent possibilities for antifungal therapies. S. cerevisiae is a model organism that is used to study many eukaryotic systems. In this review, we analyse the potency and relevance of this model system in investigating fungal susceptibility to azole drugs. Although many of the concepts apply to multiple pathogenic fungi, for the sake of simplicity, we will focus on the validity of using S. cerevisiae as a model organism for two Candida species, C. albicans and C. glabrata. Apart from the general benefits, we explore how S. cerevisiae can specifically be used to improve our knowledge on azole drug resistance and enables fast and efficient screening for novel drug targets in combinatorial therapy. We consider the shortcomings of the model system, yet conclude that it is still opportune to use S. cerevisiae as a model system for pathogenic fungi in this era.


Assuntos
Antifúngicos/uso terapêutico , Azóis/uso terapêutico , Saccharomyces cerevisiae/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Humanos
13.
Mol Microbiol ; 108(3): 258-275, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453849

RESUMO

Candida albicans is a major human fungal pathogen, causing superficial, as well as life-threatening invasive infections. Therefore, it has to adequately sense and respond to the host defense by expressing appropriate virulence attributes. The most important virulence factor of C. albicans is the yeast-to-hyphae morphogenetic switch, which can be induced by numerous environmental cues, including the amino acid methionine. Here, we show an essential role for methionine permease Mup1 in methionine-induced morphogenesis, biofilm formation, survival inside macrophages and virulence. Furthermore, we demonstrate that this process requires conversion of methionine into S-adenosyl methionine (SAM) and its decarboxylation by Spe2. The resulting amino-propyl group is then used for biosynthesis of polyamines, which have been shown to activate adenylate cyclase. Inhibition of the SPE2 SAM decarboxylase gene strongly impairs methionine-induced morphogenesis on specific media and significantly delays virulence in the mouse systemic infection model system. Further proof of the connection between methionine uptake and initial metabolism and the cAMP-PKA pathway was obtained by showing that both Mup1 and Spe2 are required for cAMP production in response to methionine. Our results suggest that amino acid transport and further metabolism are interesting therapeutic targets as inhibitors of this may prevent the morphogenetic switch, thereby preventing virulence.


Assuntos
Candida albicans/metabolismo , Metionina/metabolismo , Adenilil Ciclases/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , AMP Cíclico/biossíntese , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Macrófagos/microbiologia , Morfogênese/fisiologia , Transdução de Sinais , Virulência/fisiologia , Fatores de Virulência/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-30782993

RESUMO

Fungal infections pose a substantial threat to the human population. They can cause either mild and relatively harmless infections or invasive and often lethal diseases in patients with a weakened immune system. The majority of these human fungal infections are caused by Candida species. The limited amount of available therapies, together with the development of resistance against these drugs, strongly emphasizes the need for novel therapeutic strategies. As it is quite time-consuming to introduce completely new drugs to the market, potentiating the efficacy of existing drugs would be a better strategy. Therefore, it is important to identify cellular pathways involved in the development of drug resistance. We found that vesicular transport is involved in fungal susceptibility to the most widely used antifungal drug, fluconazole. We identified specific complexes in the vesicular transport pathway which contribute to fluconazole resistance or tolerance in the model organism Saccharomyces cerevisiae Furthermore, we confirmed our findings in the clinically relevant fungi Candida albicans and Candida glabrata Finally, we show that the combination of fluconazole with a specific inhibitor of the vesicular transport pathway increases the susceptibility of Candida species, indicating the potential of using vesicular transport as a target in combination therapy.


Assuntos
Antifúngicos/farmacologia , Fluconazol/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana
15.
Artigo em Inglês | MEDLINE | ID: mdl-30420485

RESUMO

Candida glabrata can attach to various medical implants and forms thick biofilms despite its inability to switch from yeast to hyphae. The current in vivoC. glabrata biofilm models only provide limited information about colonization and infection and usually require animal sacrifice. To gain real-time information from individual BALB/c mice, we developed a noninvasive imaging technique to visualize C. glabrata biofilms in catheter fragments that were subcutaneously implanted on the back of mice. Bioluminescent C. glabrata reporter strains (lucOPT 7/2/4 and lucOPT 8/1/4), free of auxotrophic markers, expressing a codon-optimized firefly luciferase were generated. A murine subcutaneous model was used to follow real-time in vivo biofilm formation in the presence and absence of fluconazole and caspofungin. The fungal load in biofilms was quantified by CFU counts and by bioluminescence imaging (BLI). C. glabrata biofilms formed within the first 24 h, as documented by the increased number of device-associated cells and elevated bioluminescent signal compared with adhesion at the time of implant. The in vivo model allowed monitoring of the antibiofilm activity of caspofungin against C. glabrata biofilms through bioluminescent imaging from day four after the initiation of treatment. Contrarily, signals emitted from biofilms implanted in fluconazole-treated mice were similar to the light emitted from control-treated mice. This study gives insights into the real-time development of C. glabrata biofilms under in vivo conditions. BLI proved to be a dynamic, noninvasive, and sensitive tool to monitor continuous biofilm formation and activity of antifungal agents against C. glabrata biofilms formed on abiotic surfaces in vivo.


Assuntos
Antifúngicos/farmacologia , Caspofungina/farmacologia , Fluconazol/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
16.
Cell Microbiol ; 20(10): e12863, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29845711

RESUMO

The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is central to signal transduction in many organisms. In pathogenic fungi such as Candida albicans, this signalling cascade has proven to be involved in several processes, such as virulence, indicating its potential importance in antifungal drug discovery. Candida glabrata is an upcoming pathogen of the same species, yet information regarding the role of cAMP-PKA signalling in virulence is largely lacking. To enable efficient monitoring of cAMP-PKA activity in this pathogen, we here present the usage of two FRET-based biosensors. Both variations in the activity of PKA and the quantity of cAMP can be detected in a time-resolved manner, as we exemplify by glucose-induced activation of the pathway. We also present information on how to adequately process and analyse the data in a mathematically correct and physiologically relevant manner. These sensors will be of great benefit for scientists interested in linking the cAMP-PKA signalling cascade to downstream processes, such as virulence, possibly in a host environment.


Assuntos
Técnicas Biossensoriais/métodos , Candida glabrata/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Candida glabrata/patogenicidade , Glucose/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Transdução de Sinais
17.
Mem Inst Oswaldo Cruz ; 114: e180566, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30892381

RESUMO

BACKGROUND: Opportunistic pathogenic yeast species are frequently associated with water habitats that have pollution sources of human or animal origin. Candida albicans has already been suggested as a faecal indicator microorganism for aquatic environments. OBJECTIVES: The goal of this study was to investigate the occurrence of C. albicans and other opportunistic yeasts in sand and seawater samples from beaches in Brazil to assess their correlation with Escherichia coli, and to characterise the pathogenic potential of the yeast isolates. METHODS: Opportunistic species (yeasts that grow at 37ºC) were isolated from sand and seawater samples from eight beaches in Brazil during the summer and the winter. Opportunistic yeast species were evaluated for their susceptibility to antifungal drugs, virulence factors, and the in vitro and in vivo biofilm formation. Strains were selected to carry out virulence tests using BALB/c mice. FINDINGS: Several water samples could be classified as inappropriate for primary contact recreation in relation to E. coli densities. C. albicans was isolated in low densities. Of the 144 opportunistic yeasts evaluated, 61% displayed resistance or dose-dependent sensitivity to at least one tested drug, and 40% produced proteinase. Strains of C. albicans and Kodamaea ohmeri exhibited the highest rates of adhesion to buccal epithelial cells. All the C. albicans strains that were tested were able to undergo morphogenesis and form a biofilm on catheter fragments in both in vitro and in vivo experiments. It was possible to confirm the pathogenic potential of three of these strains during the disseminated infection test. MAIN CONCLUSIONS: The identification of opportunistic yeast species in seawater and sand samples from Brazilian beaches suggest a potential risk to the health of people who use these environments for recreational purposes.


Assuntos
Antifúngicos/farmacologia , Praias/estatística & dados numéricos , Biofilmes/crescimento & desenvolvimento , Candida albicans/isolamento & purificação , Escherichia coli/isolamento & purificação , Água do Mar/microbiologia , Animais , Brasil , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Feminino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Modelos Animais , Estações do Ano , Virulência , Fatores de Virulência
18.
Artigo em Inglês | MEDLINE | ID: mdl-29061737

RESUMO

In this study, we investigated the potential antifungal activity of the alkylphospholipid oleylphosphocholine (OlPC), a structural analogue of miltefosine, on in vitro and in vivoCandida albicans biofilm formation. The effect of OlPC on in vitro and in vivoC. albicans biofilms inside triple-lumen polyurethane catheters was studied. In vivo biofilms were developed subcutaneously after catheter implantation on the lower back of Sprague-Dawley rats. Animals were treated orally with OlPC (20 mg/kg of body weight/day) for 7 days. The effect of OlPC on biofilms that developed on the mucosal surface was studied in an ex vivo model of oral candidiasis. The role of OlPC in C. albicans morphogenesis was investigated by using hypha-inducing media, namely, Lee, Spider, and RPMI 1640 media. OlPC displayed activity against both planktonic cells and in vitroC. albicans biofilms. To completely abolish preformed, 24-h-old biofilms, higher concentrations (8, 10, and 13 mg/liter) were needed. Moreover, OlPC was able to reduce C. albicans biofilms formed by caspofungin-resistant clinical isolates and acted synergistically when combined with caspofungin. The daily oral administration of OlPC significantly reduced in vivoC. albicans biofilms that developed subcutaneously. In addition, OlPC decreased biofilm formation on mucosal surfaces. Interestingly, the application of subinhibitory concentrations of OlPC already inhibited the yeast-to-hypha transition, a crucial virulence factor of C. albicans We document, for the first time, the effects of OlPC on C. albicans cells and suggest the potential use of OlPC for the treatment of C. albicans biofilm-associated infections.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Bucal/tratamento farmacológico , Fosforilcolina/análogos & derivados , Animais , Biofilmes/efeitos dos fármacos , Candidíase Bucal/microbiologia , Caspofungina/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Fosforilcolina/farmacologia , Plâncton/microbiologia , Ratos , Ratos Sprague-Dawley
19.
J Antimicrob Chemother ; 73(10): 2806-2814, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010876

RESUMO

Objectives: We aimed to establish a novel murine intra-abdominal foreign body infection model to study the activity of anidulafungin and tigecycline against dual species Candida albicans/Staphylococcus aureus biofilms. Methods: In vitro and in vivo single and dual species biofilms were developed inside serum-coated triple-lumen catheters placed in 24-well plates or implanted intraperitoneally in BALB/c mice. The effect of tigecycline and anidulafungin alone and in combination was tested using clinically relevant concentrations. Scanning electron microscopy was used to visualize the mature biofilm structure developed intraperitoneally. Flow cytometry was used to determine the immunological response upon infection. Immunoblot analysis allowed us to determine the effect of anidulafungin on poly-ß-(1,6)-N-acetylglucosamine in in vitro-grown S. aureus biofilms. Results: We determined the MIC, MBC and in vitro susceptibility profile for anidulafungin and tigecycline against C. albicans and S. aureus in mixed and single species biofilms. We demonstrated that anidulafungin acts synergistically when combined with tigecycline against in vivo intra-abdominal biofilms. Moreover, we reveal that anidulafungin reduces the abundance of S. aureus poly-ß-(1,6)-N-acetylglucosamine. The influx of neutrophils is much increased when infected with mixed biofilms compared with single species biofilms. Conclusions: Currently, treatment of intra-abdominal infections, in particular polymicrobial catheter-associated peritonitis, is ineffective. To the best of our knowledge, this is the first study that provides insight into new possible options for treatment of C. albicans/S. aureus biofilms present in the abdominal cavity.


Assuntos
Anidulafungina/administração & dosagem , Antibacterianos/administração & dosagem , Antifúngicos/administração & dosagem , Coinfecção/tratamento farmacológico , Corpos Estranhos/complicações , Peritonite/tratamento farmacológico , Tigeciclina/administração & dosagem , Anidulafungina/farmacologia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/complicações , Candidíase/tratamento farmacológico , Candidíase/patologia , Coinfecção/microbiologia , Coinfecção/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Citometria de Fluxo , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Peritonite/microbiologia , Peritonite/patologia , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Tigeciclina/farmacologia , Resultado do Tratamento
20.
Artigo em Inglês | MEDLINE | ID: mdl-28893777

RESUMO

In microbial biofilms, microorganisms utilize secreted signaling chemical molecules to coordinate their collective behavior. Farnesol is a quorum sensing molecule secreted by the fungal species Candida albicans and shown to play a central physiological role during fungal biofilm growth. Our pervious in vitro and in vivo studies characterized an intricate interaction between C. albicans and the bacterial pathogen Staphylococcus aureus, as these species coexist in biofilm. In this study, we aimed to investigate the impact of farnesol on S. aureus survival, biofilm formation, and response to antimicrobials. The results demonstrated that in the presence of exogenously supplemented farnesol or farnesol secreted by C. albicans in biofilm, S. aureus exhibited significantly enhanced tolerance to antimicrobials. By using gene expression studies, S. aureus mutant strains, and chemical inhibitors, the mechanism for the enhanced tolerance was attributed to upregulation of drug efflux pumps. Importantly, we showed that sequential exposure of S. aureus to farnesol generated a phenotype of high resistance to antimicrobials. Based on the presence of intracellular reactive oxygen species upon farnesol exposure, we hypothesize that antimicrobial tolerance in S. aureus may be mediated by farnesol-induced oxidative stress triggering the upregulation of efflux pumps, as part of a general stress response system. Hence, in mixed biofilms, C. albicans may influence the pathogenicity of S. aureus through acquisition of a drug-tolerant phenotype, with important therapeutic implications. Understanding interspecies signaling in polymicrobial biofilms and the specific drug resistance responses to secreted molecules may lead to the identification of novel targets for drug development.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Farneseno Álcool/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Tolerância a Medicamentos/genética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/agonistas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Percepção de Quorum/genética , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Simbiose , Vancomicina/antagonistas & inibidores , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA