Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 144(5): 1526-1541, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34148071

RESUMO

Alzheimer's disease, characterized by brain deposits of amyloid-ß plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-ß levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-ß and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-ß load, due to increased clearance and degradation of amyloid-ß by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Anexina A1/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Permeabilidade Capilar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
2.
Neurobiol Dis ; 127: 398-409, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30878534

RESUMO

We have exploited whole brain microscopy to map the progressive deposition of hyperphosphorylated tau in intact, cleared mouse brain. We found that the three-dimensional spreading pattern of hyperphosphorylated tau in the brain of an aging Tau.P301L mouse model did not resemble that observed in AD patients. Injection of synthetic or patient-derived tau fibrils in the CA1 region resulted in a more faithful spreading pattern. Atlas-guided volumetric analysis showed a connectome-dependent spreading from the injection site and also revealed hyperphosphorylated tau deposits beyond the direct anatomical connections. In fibril-injected brains, we also detected a persistent subpopulation of rod-like and swollen microglia. Furthermore, we showed that the hyperphosphorylated tau load could be reduced by intracranial co-administration of, and to a lesser extent, by repeated systemic dosing with an antibody targeting the microtubule-binding domain of tau. Thus, the combination of targeted seeding and in toto staging of tau pathology allowed assessing regional vulnerability in a comprehensive manner, and holds potential as a preclinical drug validation tool.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Microglia/patologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Tauopatias/patologia
3.
NMR Biomed ; 32(2): e4037, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30489666

RESUMO

Alzheimer's disease is the most common neurodegenerative disease, and many patients also present with vascular dysfunction. In this study, we aimed to assess cerebral blood flow (CBF) and cerebrovascular response (CVR) as early, pre-symptomatic (3 months of age), imaging markers in a bigenic model of Alzheimer's disease (APP.V717IxTau.P301L, biAT) and in the monogenic parental strains. We further developed our previously published combination of pulsed arterial spin labeling perfusion MRI and hypo-ventilation paradigm, which allows weaning of the mice from the ventilator. Furthermore, the commonly used isoflurane anesthesia induces vasodilation and is thereby inherently a vascular challenge. We therefore assessed perfusion differences in the mouse models under free-breathing isoflurane conditions. We report (i) that we can determine CBF and hypoventilation-based CVR under ketamine/midazolam anesthesia and wean mice from the ventilator, making it a valuable tool for assessment of CBF and CVR in mice, (ii) that biAT mice exhibit lower cortical CBF than wild-type mice at age 3 months, (iii) that CVR was increased in both biAT and APP.V717I mice but not in Tau.P301L mice, identifying the APP genotype as a strong influencer of brain CVR and (iv) that perfusion differences at baseline are masked by the widely used isoflurane anesthesia.


Assuntos
Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/irrigação sanguínea , Hipoventilação/complicações , Hipoventilação/fisiopatologia , Perfusão , Proteínas tau/metabolismo , Anestesia , Animais , Dióxido de Carbono/metabolismo , Modelos Animais de Doenças , Isoflurano/administração & dosagem , Isoflurano/farmacologia , Masculino , Camundongos Transgênicos , Placa Amiloide/patologia
4.
Nature ; 480(7376): E4-5; discussion E6, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22158250

RESUMO

Arising from C. J. Phiel, C. A. Wilson, V. M.-Y. Lee & P. S. Klein 423, 435-439 (2003)A major unresolved issue in Alzheimer's disease is identifying the mechanisms that regulate proteolytic processing of amyloid precursor protein (APP)-glycogen synthase kinase-3 (GSK-3) isozymes are thought to be important in this regulation. Phiel et al. proposed that GSK-3α, but not GSK-3ß, controls production of amyloid. We analysed the proteolytic processing of mouse and human APP in mouse brain in vivo in five different genetic and viral models. Our data do not yield evidence for either GSK-3α-mediated or GSK-3ß-mediated control of APP processing in brain in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Animais
5.
Brain ; 137(Pt 1): 78-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24277722

RESUMO

The chemokine fractalkine modulates microglial responses in neurodegenerative diseases, including tauopathies, but the mechanistic processes and their relevance in human brain pathologies is not yet known. Here, we show that hippocampal HT22 cells expressing human TAU(P301L) mutant protein produce fractalkine, which in microglia activates AKT, inhibits glycogen synthase kinase-3ß and upregulates the transcription factor NRF2/NFE2L2 and its target genes including heme oxygenase 1. In a mouse model of tauopathy based on stereotaxic delivery in hippocampus of an adeno-associated viral vector for expression of TAU(P301L), we confirmed that tau-injured neurons express fractalkine. NRF2- and fractalkine receptor-knockout mice did not express heme oxygenase 1 in microglia and exhibited increased microgliosis and astrogliosis in response to neuronal TAU(P301L) expression, demonstrating a crucial role of the fractalkine/NRF2/heme oxygenase 1 pathway in attenuation of the pro-inflammatory phenotype. The hippocampus of patients with Alzheimer's disease also exhibits increased expression of fractalkine in TAU-injured neurons that recruit microglia. These events correlated with increased levels of NRF2 and heme oxygenase 1 proteins, suggesting an attempt of the diseased brain to limit microgliosis. Our combined results indicate that fractalkine mobilizes NRF2 to limit over-activation of microglia and identify this new target to control unremitting neuroinflammation in tauopathies.


Assuntos
Quimiocina CX3CL1/farmacologia , Gliose/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Tauopatias/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Western Blotting , Encéfalo/patologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Feminino , Imunofluorescência , Gliose/etiologia , Gliose/patologia , Humanos , Imuno-Histoquímica , Inflamação/patologia , Lentivirus/genética , Masculino , Camundongos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Tauopatias/complicações , Tauopatias/patologia
6.
Neurobiol Dis ; 67: 119-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24704314

RESUMO

Tau.P301L transgenic mice suffer precocious mortality between ages 8 and 11 months, resulting from upper airway defects caused by tauopathy in autonomic brainstem circuits that control breathing (Dutschmann et al., 2010). In individual mice, the clinical phenotype evolves progressively and rapidly (3-6weeks) from clasping, over general motor impairment to severe reduction in body-weight into the terminal phase that announces imminent death (<3days). Surprisingly, co-expression of GSK3ß with Tau.P301L significantly prolonged survival of bigenic biGT mice (Terwel et al., 2008), which we here assign to delayed development of brainstem tauopathy. Eventually, brainstem tauopathy became as prominent in old biGT mice in the specified brainstem nuclei as in the parental Tau.P301L mice, resulting in similar clinical deterioration and terminal phase preceding death, although at later age. Biochemically, in both genotypes the pathway to neurofibrillary tangles and neuropil threads was similar: phosphorylation of protein Tau and formation of soluble oligomers and insoluble aggregates, ending in the typical tangles and threads of tauopathy. The extra GSK3ß activity led to expected increased phosphorylation of protein Tau, particularly at residues S262 and S396, which we must conclude to delay the aggregation of protein Tau in the brainstem of aging biGT mice. The unexpected, paradoxical alleviation of the brainstem problems in biGT mice allowed them to grow older and thereby develop more severe tauopathy in forebrain than Tau.P301L mice, which succumb at younger age.


Assuntos
Tronco Encefálico/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Tauopatias/enzimologia , Proteínas tau/química , Proteínas tau/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Análise de Sobrevida , Tauopatias/metabolismo
7.
Eur J Neurosci ; 40(2): 2442-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24754737

RESUMO

The microtubule-associated protein Tau is responsible for a large group of neurodegenerative disorders, known as tauopathies, including Alzheimer's disease. Tauopathy result from augmented and/or aberrant phosphorylation of Tau. Besides aging and various genetic and epigenetic defects that remain largely unknown, an important non-genetic agent that contributes is hypothermia, eventually caused by anesthesia. Remarkably, tauopathy in brains of hibernating mammals is not pathogenic, and, because it is fully reversible, is even considered to be neuroprotective. Here, we assessed the terminal phase of Tau.P301L mice and bigenic crosses with mice lacking glycogen synthase kinase 3 (GSK3)α completely, or GSK3ß specifically in neurons. We also analysed biGT bigenic mice that co-express Tau.P301L with GSK3ß.S9A and develop severe forebrain tauopathy with age. We found that the precocious mortality of Tau.P301L mice was typified by hypothermia that aggravated Tau phosphorylation, but, surprisingly, independently of GSK3α/ß. The important contribution of hypothermia at the time of death of mice with tauopathy suggests that body temperature should be included as a parameter in the analysis of pre-clinical models, and, by extension, in patients suffering from tauopathy.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Processamento de Proteína Pós-Traducional , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Quinase 3 da Glicogênio Sintase/genética , Humanos , Hipotermia/metabolismo , Hipotermia/fisiopatologia , Camundongos , Neurônios/metabolismo , Fosforilação , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Tauopatias/fisiopatologia , Proteínas tau/genética , Proteínas tau/toxicidade
8.
Brain ; 141(9): 2536-2539, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169590
9.
Proc Natl Acad Sci U S A ; 108(17): 6957-62, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21482799

RESUMO

Functional diversity of protein phosphatase 2A (PP2A) enzymes mainly results from their association with distinct regulatory subunits. To analyze the functions of one such holoenzyme in vivo, we generated mice lacking PR61/B'δ (B56δ), a subunit highly expressed in neural tissues. In PR61/B'δ-null mice the microtubule-associated protein tau becomes progressively phosphorylated at pathological epitopes in restricted brain areas, with marked immunoreactivity for the misfolded MC1-conformation but without neurofibrillary tangle formation. Behavioral tests indicated impaired sensorimotor but normal cognitive functions. These phenotypical characteristics were further underscored in PR61/B'δ-null mice mildly overexpressing human tau. PR61/B'δ-containing PP2A (PP2A(T61δ)) poorly dephosphorylates tau in vitro, arguing against a direct dephosphorylation defect. Rather, the activity of glycogen synthase kinase-3ß, a major tau kinase, was found increased, with decreased phosphorylation of Ser-9, a putative cyclin-dependent kinase 5 (CDK5) target. Accordingly, CDK5 activity is decreased, and its cellular activator p35, strikingly absent in the affected brain areas. As opposed to tau, p35 is an excellent PP2A(T61δ) substrate. Our data imply a nonredundant function for PR61/B'δ in phospho-tau homeostasis via an unexpected spatially restricted mechanism preventing p35 hyperphosphorylation and its subsequent degradation.


Assuntos
Encéfalo/enzimologia , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Dobramento de Proteína , Proteína Fosfatase 2/metabolismo , Tauopatias/enzimologia , Animais , Quinase 5 Dependente de Ciclina/genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Fosforilação/genética , Proteína Fosfatase 2/genética , Ratos , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Synapse ; 67(6): 313-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23390016

RESUMO

Glycogen synthase kinase-3ß (GSK3ß) activity has been previously linked to Alzheimer's disease (AD) by its phosphorylation of tau and activation by amyloid. GSK3ß intracellular distribution is important in regulating its activity by restricting access to compartment-specific substrates. This study investigated regional and intracellular distribution of GSK3ß in a mouse model of AD, a bigenic mouse with combined amyloid and tau pathology (BiAT), and controls (FVB). At two different ages, the entire rostrocaudal extent of each brain was examined. Young (6-months-old) FVB and BiAT mice did not differ in GSK3ß expression and localization. In old (13-month-old) BiAT mice, neurons showed increased GSK3ß expression only in AD-relevant brain regions as compared with modest staining in region- and age-matched controls. Two regions with the most robust changes between FVB and BiAT mice, the amygdala and piriform cortex, were quantified at the light microscopic level. In both regions, the density of darkly labeled neurons was significantly greater in the old BiAT mice vs. the old FVB mice. Electron microscopy of the piriform cortex showed neuronal GSK3ß labeling in the rough endoplasmic reticulum, on ribosomes, and on microtubules in dendrites in both strains of mice. In old BiAT mice, GSK3ß labeling was qualitatively more robust compared to age-matched controls, and GSK3ß also appeared in neurofibrillary tangles. In conclusion, GSK3ß expression was increased in specific intracellular locations and was found in tangles in old BiAT mice, suggesting that GSK3ß overexpression in specific brain areas may be intrinsic to AD pathology.


Assuntos
Doença de Alzheimer/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Emaranhados Neurofibrilares/metabolismo , Ribossomos/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
11.
J Neurosci ; 31(49): 18036-47, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159117

RESUMO

Cognitive demise correlates with progressive brain tauopathy in dementing patients. Improved cognition of young Tau.P301L mice contrasts with dysfunction later in life and remains unexplained (Boekhoorn et al., 2006). To unravel early mechanisms, we composed a correlative time line of clinical symptoms, cognitive defects, and biochemical and pathological traits, including comprehensive analysis of dendritic spines in specified regions of the cortex and hippocampus of young and adult Tau.P301L mice. Remarkably, young Tau.P301L mice have not more, but more mature spines than wild-type mice, revealing the anatomical substrate for their improved cognition and LTP. Spine maturation remained high in the hippocampus of adult Tau.P301L mice. However, spines regressed in length paralleling impaired cognition and increased Tau phosphorylation (Terwel et al., 2005). Conversely, spine maturation was unaffected in adult Tau.4R mice, while spine density was increased and length reduced similar to Tau.P301L mice. To explain how protein Tau promoted spinogenesis, we analyzed hippocampal synaptosomes and dendritic spines for mouse and human Tau. While synaptosomes were positive for both mouse and human Tau, weak variable reaction in spines was observed only after fixation according to Bouin. Mouse Tau was absent from spines in wild-type mice, dissociating the pathological actions of Tau in transgenic mice by relocalization into dendrites and spines from the physiological actions of protein Tau in axons only. We conclude that mutant protein Tau modulates cognition and morphology of spines similarly and in both directions, with pathology later in life coinciding with increased phosphorylation and relocalization of Tau from axons to soma and processes.


Assuntos
Encéfalo/patologia , Transtornos Cognitivos , Espinhas Dendríticas/patologia , Leucina/genética , Neurônios/patologia , Prolina/genética , Proteínas tau/genética , Fatores Etários , Animais , Proteínas de Bactérias/genética , Encéfalo/citologia , Células Cultivadas , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação/genética , Sinaptossomos/metabolismo , Proteínas tau/metabolismo
12.
Neurobiol Dis ; 46(1): 234-43, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22316605

RESUMO

The postoperative cognitive decline resulting from volatile anesthesia is gaining acceptance as a major health problem. The common anesthetic isoflurane is suspected to precipitate neurodegeneration in Alzheimer's disease by unknown mechanisms. We previously validated that 8month old Tau.P301L mice suffer upper airways defects related to tauopathy within the Kolliker-Fuse nucleus that controls upper airways function. We now report that isoflurane anesthesia in young, pre-symptomatic Tau.P301L mice triggered precocious upper airways defects and tauopathy in several brainstem nuclei, including the nucleus ambiguus that contains upper airways motor neurons and the Kolliker-Fuse. The prescription drug memantine, identified as an NMDA receptor antagonist, prevented the post-anesthesia upper airways dysfunction and alleviated tauopathy in the nucleus ambiguus and Kolliker-Fuse. We further identified protocols of anesthesia in young Tau.P301L mice that mitigated adverse effects of isoflurane anesthesia. Thus, our experimental findings in a validated mouse model for tauopathy demonstrate the link between isoflurane anesthesia, earlier onset of tauopathy and earlier onset of functional deficits, highlight the implication of NMDA-receptors in the mechanisms mediating the adverse effects of isoflurane, and potentially identify safer protocols for anesthesia in patients with tauopathy.


Assuntos
Anestésicos Inalatórios/toxicidade , Isoflurano/toxicidade , Degeneração Neural/induzido quimicamente , Insuficiência Respiratória/induzido quimicamente , Tauopatias/induzido quimicamente , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Insuficiência Respiratória/patologia , Insuficiência Respiratória/prevenção & controle , Tauopatias/patologia , Tauopatias/prevenção & controle
13.
Am J Pathol ; 179(4): 2001-15, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21839061

RESUMO

Adeno-associated virus (AAV)-mediated expression of wild-type or mutant P301L protein tau produces massive degeneration of pyramidal neurons without protein tau aggregation. We probed this novel model for genetic and structural factors and early parameters of pyramidal neurodegeneration. In yellow fluorescent protein-expressing transgenic mice, intracerebral injection of AAV-tauP301L revealed early damage to apical dendrites of CA1 pyramidal neurons, whereas their somata remained normal. Ultrastructurally, more and enlarged autophagic vacuoles were contained in degenerating dendrites and manifested as dark, discontinuous, vacuolated processes surrounded by activated astrocytes. Dendritic spines were lost in AAV-tauP301L-injected yellow fluorescent protein-expressing transgenic mice, and ultrastructurally, spines appeared dark and degenerating. In CX3CR1(EGFP/EGFP)-deficient mice, microglia were recruited early to neurons expressing human tau. The inflammatory response was accompanied by extravasation of plasma immunoglobulins. α2-Macroglobulin, but neither albumin nor transferrin, became lodged in the brain parenchyma. Large proteins, but not Evans blue, entered the brain of mice injected with AAV-tauP301L. Ultrastructurally, brain capillaries were constricted and surrounded by swollen astrocytes with extensions that contacted degenerating dendrites and axons. Together, these data corroborate the hypothesis that neuroinflammation participates essentially in tau-mediated neurodegeneration, and the model recapitulates early dendritic defects reminiscent of "dendritic amputation" in Alzheimer's disease.


Assuntos
Dendritos/patologia , Inflamação/patologia , Degeneração Neural/patologia , Sistema Nervoso/irrigação sanguínea , Sistema Nervoso/patologia , Proteínas tau/metabolismo , Animais , Axônios/patologia , Axônios/ultraestrutura , Biomarcadores/metabolismo , Vasos Sanguíneos/patologia , Vasos Sanguíneos/ultraestrutura , Barreira Hematoencefálica/patologia , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/ultraestrutura , Dendritos/ultraestrutura , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/complicações , Masculino , Camundongos , Degeneração Neural/complicações , Estresse Oxidativo , Permeabilidade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura
14.
FASEB J ; 25(9): 3208-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21593432

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) has neuroprotective and neurotrophic properties and is a potent α-secretase activator. As PACAP peptides and their specific receptor PAC1 are localized in central nervous system areas affected by Alzheimer's disease (AD), this study aims to examine the role of the natural peptide PACAP as a valuable approach in AD therapy. We investigated the effect of PACAP in the brain of an AD transgenic mouse model. The long-term intranasal daily PACAP application stimulated the nonamyloidogenic processing of amyloid precursor protein (APP) and increased expression of the brain-derived neurotrophic factor and of the antiapoptotic Bcl-2 protein. In addition, it caused a strong reduction of the amyloid ß-peptide (Aß) transporter receptor for advanced glycation end products (RAGE) mRNA level. PACAP, by activation of the somatostatin-neprilysin cascade, also enhanced expression of the Aß-degrading enzyme neprilysin in the mouse brain. Furthermore, daily PAC1-receptor activation via PACAP resulted in an increased mRNA level of both the PAC1 receptor and its ligand PACAP. Our behavioral studies showed that long-term PACAP treatment of APP[V717I]-transgenic mice improved cognitive function in animals. Thus, nasal application of PACAP was effective, and our results indicate that PACAP could be of therapeutic value in treating AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Administração Intranasal , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neprilisina/genética , Neprilisina/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
15.
ACS Chem Neurosci ; 13(6): 796-805, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35253420

RESUMO

Two closely related glycogen synthase kinase-3 (GSK-3) isoforms have been identified in mammals: GSK-3α and GSK-3ß. GSK-3ß is the most prominent in the central nervous system and was previously shown to control neuronal excitability. We previously demonstrated that indirubin and its structural analogue and the nonselective GSK-3 inhibitor BIO-acetoxime exerted anticonvulsant effects in acute seizure models in zebrafish, mice, and rats. We here examined for the first time the anticonvulsant effect of TCS2002, a specific and potent inhibitor of GSK-3ß, in two models for limbic seizures: the pilocarpine rat model for focal seizures and the acute 6 Hz corneal mouse model for refractory seizures. Next, we additionally used the 6 Hz kindling model to establish differences in seizure susceptibility and seizure progression in mice that either overexpress human GSK-3ß (GSK-3ß OE) or lack GSK-3ß (GSK-3ß-/-) in neurons. We demonstrate that TCS2002 exerts anticonvulsant actions against pilocarpine- and 6 Hz-evoked seizures. Compared to wild-type littermates, GSK-3ß OE mice are less susceptible to seizures but are more rapidly kindled. Interestingly, compared to GSK-3ß+/+ mice, neuronal GSK-3ß-/- mice show increased susceptibility to 6 Hz-induced seizures. These contrasting observations suggest compensatory neurodevelopmental mechanisms that alter seizure susceptibility in GSK-3ß OE and GSK-3ß-/- mice. Although the pronounced anticonvulsant effects of selective and acute GSK-3ß inhibition in the 6 Hz model identify GSK-3ß as a potential drug target for pharmacoresistant seizures, our data on the sustained disruption of GSK-3ß activity in the transgenic mice suggest a role for GSK-3 in kindling and warrants further research into the long-term effects of selective pharmacological GSK-3ß inhibition.


Assuntos
Anticonvulsivantes , Pilocarpina , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase , Glicogênio Sintase Quinase 3 beta , Mamíferos , Camundongos , Pilocarpina/toxicidade , Isoformas de Proteínas , Ratos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Peixe-Zebra
16.
Pharmaceutics ; 14(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890313

RESUMO

The failures of anti-ß-amyloid immunotherapies suggested that the very low fraction of injected antibodies reaching the brain parenchyma due to the filtering effect of the BBB may be a reason for the lack of therapeutic effect. However, there is no treatment, as yet, for the amyotrophic lateral sclerosis (ALS) despite substantial evidence existing of the involvement of TDP-43 protein in the evolution of ALS. To circumvent this filtering effect, we have developed a novel approach to facilitate the penetration of antibody fragments (Fabs) into the brain parenchyma. Leveraging the homing properties of endothelial progenitor cells (EPCs), we transfected, ex vivo, such cells with vectors encoding anti-ß-amyloid and anti-TDP43 Fabs turning them into an "antibody fragment factory". When injected these cells integrate into the BBB, where they secrete anti-TDP43 Fabs. The results showed the formation of tight junctions between the injected engineered EPCs and the unlabeled resident endothelial cells. When the EPCs were further modified to express the anti-TDP43 Fab, we could observe integration of these cells into the vasculature and the secretion of Fabs. Results confirm that production and secretion of Fabs at the BBB level leads to their migration to the brain parenchyma where they might exert a therapeutic effect.

17.
J Neurosci ; 30(5): 1810-21, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20130190

RESUMO

Tauopathy comprises hyperphosphorylation of the microtubule-associated protein tau, causing intracellular aggregation and accumulation as neurofibrillary tangles and neuropil treads. Some primary tauopathies are linked to mutations in the MAPT gene coding for protein tau, but most are sporadic with unknown causes. Also, in Alzheimer's disease, the most frequent secondary tauopathy, neither the cause nor the pathological mechanisms and repercussions are understood. Transgenic mice expressing mutant Tau-P301L suffer cognitive and motor defects and die prematurely from unknown causes. Here, in situ electrophysiology in symptomatic Tau-P301L mice (7-8 months of age) revealed reduced postinspiratory discharges of laryngeal motor outputs that control laryngeal constrictor muscles. Under high chemical drive (hypercapnia), postinspiratory discharge was nearly abolished, whereas laryngeal inspiratory discharge was increased disproportionally. The latter may suggest a shift of postinspiratory laryngeal constrictor activity into inspiration. In vivo double-chamber plethysmography of Tau-P301L mice showed significantly reduced respiratory airflow but significantly increased chest movements during baseline breathing, but particularly in hypercapnia, confirming a significant increase in inspiratory resistive load. Histological analysis demonstrated hyperphosphorylated tau in brainstem nuclei, directly or indirectly involved in upper airway motor control (i.e., the Kölliker-Fuse, periaqueductal gray, and intermediate reticular nuclei). In contrast, young Tau-P301L mice did not show breathing disorders or brainstem tauopathy. Consequently, in aging Tau-P301L mice, progressive upper airway dysfunction is linked to progressive tauopathy in identified neural circuits. Because patients with tauopathy suffer from upper airway dysfunction, the Tau-P301L mice can serve as an experimental model to study disease-specific synaptic dysfunction in well defined functional neural circuits.


Assuntos
Tronco Encefálico/metabolismo , Mesencéfalo/metabolismo , Transtornos Respiratórios/genética , Transtornos Respiratórios/patologia , Tauopatias/complicações , Tauopatias/patologia , Proteínas tau/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Tronco Encefálico/patologia , Modelos Animais de Doenças , Mesencéfalo/patologia , Camundongos , Camundongos Transgênicos , Mutação , Fosforilação , Pletismografia , Ventilação Pulmonar , Transtornos Respiratórios/fisiopatologia , Proteínas tau/metabolismo
18.
J Neurosci ; 30(31): 10369-79, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20685980

RESUMO

Oligomers of the beta-amyloid (Abeta) peptide have been indicated in early neuropathologic changes in Alzheimer's disease. Here, we present a synthetic Abeta(20-42) oligomer (named globulomer) with a different conformation to monomeric and fibrillar Abeta peptide, enabling the generation of highly Abeta oligomer-specific monoclonal antibodies. The globulomer-derived antibodies specifically detect oligomeric but not monomeric or fibrillar Abeta in various Abeta preparations. The globulomer-specific antibody A-887755 was able to prevent Abeta oligomer binding and dynamin cleavage in primary hippocampal neurons and to reverse globulomer-induced reduced synaptic transmission. In amyloid precursor protein (APP) transgenic mice, vaccination with Abeta globulomer and treatment with A-887755 improved novel object recognition. The cognitive improvement is likely attributable to reversing a deficit in hippocampal synaptic spine density in APP transgenic mice as observed after treatment with A-887755. Our findings demonstrate that selective reduction of Abeta oligomers by immunotherapy is sufficient to normalize cognitive behavior and synaptic deficits in APP transgenic mice.


Assuntos
Peptídeos beta-Amiloides/imunologia , Precursor de Proteína beta-Amiloide/genética , Anticorpos Monoclonais/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/imunologia , Análise de Variância , Animais , Anticorpos Monoclonais/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipocampo/citologia , Hipocampo/imunologia , Imunoprecipitação , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/imunologia , Ratos , Ratos Wistar , Reconhecimento Psicológico
19.
Biochim Biophys Acta ; 1802(10): 808-18, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20332023

RESUMO

Alzheimer's dementia is developing ever more as a complex syndrome with various unknown genetic and epigenetic contributions. These are compounded on and exacerbating the underlying amyloid and tau pathology that remain the basis of the pathological definition of Alzheimer's disease. Here, we present a selection of aspects of recent bigenic and virus-based mouse strains, developed as pre-clinical models for Alzheimer's disease. We discuss newer features in the context of the characteristics defined in previously validated transgenic models. We focus on specific aspects of single and multiple transgenic mouse models for Alzheimer's disease and for tauopathies, rather than providing an exhaustive list of all available models. We concentrate on the content of information related to neurodegeneration and disease mechanisms. We pay attention to aspects and defects that are predicted by the models and can be tested in humans. We discuss implications that help translate the fundamental knowledge into clinical, diagnostic and therapeutic applications. We elaborate on the increasing knowledge extracted from transgenic models and from newer adeno-associated viral models. We advocate this combination as a valuable strategy to study molecular, cellular and system-related pathogenic mechanisms in AD and tauopathies. We believe that innovative animal models remain needed to critically test current views, to identify and validate therapeutic targets, to allow testing of compounds, to help understand and eventually treat tauopathies, including Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/virologia , Modelos Animais de Doenças , Tauopatias/genética , Tauopatias/virologia , Doença de Alzheimer/patologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/patologia
20.
J Neurochem ; 119(5): 1064-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21951279

RESUMO

Mutations in presenilins are the major cause of familial Alzheimer's disease (FAD), leading to impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Presenilins are the catalytic subunits of γ-secretase, which itself is critically involved in the processing of amyloid precursor protein to release neurotoxic amyloid ß (Aß). Besides Aß generation, there is growing evidence that presenilins play an essential role in the formation and maintenance of synapses. To further elucidate the effect of presenilin1 (PS1) on synapses, we performed longitudinal in vivo two-photon imaging of dendritic spines in the somatosensory cortex of transgenic mice over-expressing either human wild-type PS1 or the FAD-mutated variant A246E (FAD-PS1). Interestingly, the consequences of transgene expression were different in two subtypes of cortical dendrites. On apical layer 5 dendrites, we found an enhanced spine density in both mice over-expressing human wild-type presenilin1 and FAD-PS1, whereas on basal layer 3 dendrites only over-expression of FAD-PS1 increased the spine density. Time-lapse imaging revealed no differences in kinetically distinct classes of dendritic spines nor was the shape of spines affected. Although γ-secretase-dependent processing of synapse-relevant proteins seemed to be unaltered, higher expression levels of ryanodine receptors suggest a modified Ca(2+) homeostasis in PS1 over-expressing mice. However, the conditional depletion of PS1 in single cortical neurons had no observable impact on dendritic spines. In consequence, our results favor the view that PS1 influences dendritic spine plasticity in a gain-of-function but γ-secretase-independent manner.


Assuntos
Espinhas Dendríticas/metabolismo , Plasticidade Neuronal , Presenilina-1/fisiologia , Córtex Somatossensorial/metabolismo , Transmissão Sináptica , Animais , Espinhas Dendríticas/enzimologia , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal/métodos , Plasticidade Neuronal/genética , Presenilina-1/genética , Córtex Somatossensorial/enzimologia , Transmissão Sináptica/genética , Transgenes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA