Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 57(7): e146-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27158916

RESUMO

There is a continuous drive to find new, improved therapies that have a different mechanism of action in order to help diminish the sizable percentage of persons with pharmacoresistant epilepsy. Uric acid is increasingly recognized as contributing to the pathophysiology of multiple disorders, and there are indications that uric acid might play a role in epileptic mechanisms. Nevertheless, studies that directly investigate its involvement are lacking. In this study we assessed the susceptibility to pentylenetetrazole- and pilocarpine-induced seizures in mice with genetically altered uric acid levels by targeting urate oxidase, which is the enzyme responsible for uric acid breakdown. We found that although disruption of urate oxidase resulted in a decreased susceptibility to all behavioral end points in both seizure models, overexpression did not result in any alterations when compared to their wild-type littermates. Our results suggest that a chronic increase in uric acid levels may result in decreased brain excitability.


Assuntos
Convulsivantes/efeitos adversos , Pentilenotetrazol/efeitos adversos , Pilocarpina/efeitos adversos , Convulsões/induzido quimicamente , Convulsões/genética , Urato Oxidase/deficiência , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Convulsões/patologia , Urato Oxidase/genética , Ácido Úrico/metabolismo
2.
Healthcare (Basel) ; 11(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37761713

RESUMO

The COVID-19 pandemic highlighted the need for efficient use of hospital infrastructure. The hypothesis was that a rapid shift to outpatient surgery after hip or knee arthroplasty could be implemented without compromising quality of care. The aim of this study was to assess the safety, pain management and patient-reported outcomes before and after the implementation of an accelerated discharge program using a digital follow-up tool. A retrospective cohort design was used to compare 97 patients who received primary total hip or knee arthroplasty during the pandemic (early discharge) to comparable 194 pre-pandemic patients (normal discharge). Both cohorts had the same inclusion criteria and were closely monitored using the digital follow-up tool. The accelerated discharge program reduced length of stay from a median of 3 days (before the pandemic) to a median of 1 day (during the pandemic) (p < 0.001). The complication rate of 2% was the same for both groups (p > 0.05). Patient-reported outcomes for matched samples of hip (n = 100) and knee (n = 82) arthroplasty patients were similar before, at 6 weeks and 3 months after surgery for both groups (p > 0.05). There were no differences in pain and medication consumption for the first 6 weeks (p > 0.05). This study demonstrates that reducing length of stay from three to one night after total knee or hip arthroplasty, with the help of a digital follow-up tool, results in a stable rate of complications, readmission, and comparable clinical outcomes, while reducing the socio-economic burden on the health system.

3.
Front Neurosci ; 15: 653844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854415

RESUMO

AIM: GtACR2, a light-activated chloride channel, is an attractive tool for neural inhibition as it can shunt membrane depolarizations. In this study, we assessed the effect of activating GtACR2 on in vivo hippocampal CA1 activity evoked by Schaffer collateral (SC) stimulation. METHODS: Adult male Wistar rats were unilaterally injected with 0.5 µL of adeno associated viral vector for induction of GtACR2-mCherry (n = 10, GtACR2 group) or mCherry (n = 4, Sham group) expression in CA1 pyramidal neurons of the hippocampus. Three weeks later, evoked potentials (EPs) were recorded from the CA1 subfield placing an optrode (bipolar recording electrode attached to an optic fiber) at the injection site and a stimulation electrode targeting SCs. Effects of illumination parameters required to activate GtACR2 such as light power densities (LPDs), illumination delays, and light-pulse durations were tested on CA1 EP parameters [population spike (PS) amplitude and field excitatory postsynaptic potential (fEPSP) slope]. RESULTS: In the GtACR2 group, delivery of a 10 ms light-pulse induced a negative deflection in the local field potential which increased with increasing LPD. When combined with electrical stimulation of the SCs, light-induced activation of GtACR2 had potent inhibitory effects on CA1 EPs. An LPD of 160 mW/mm2 was sufficient to obtain maximal inhibition CA1 EPs. To quantify the duration of the inhibitory effect, a 10 ms light-pulse of 160 mW/mm2 was delivered at increasing delays before the CA1 EPs. Inhibition of EPs was found to last up to 9 ms after the cessation of the light-pulse. Increasing light-pulse durations beyond 10 ms did not result in larger inhibitory effects. CONCLUSION: Precisely timed activation of GtACR2 potently blocks evoked activity of CA1 neurons. The strength of inhibition depends on LPD, lasts up to 9 ms after a light-pulse of 10 ms, and is independent of the duration of the light-pulse given.

4.
Front Neurosci ; 15: 663337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927593

RESUMO

INTRODUCTION: The locus coeruleus noradrenergic (LC-NA) system is studied for its role in various neurological and psychiatric disorders such as epilepsy and Major Depression Dissorder. Chemogenetics is a powerful technique for specific manipulation of the LC to investigate its functioning. Local injection of AAV2/7 viral vectors has limitations with regards to efficiency and specificity of the transduction, potentially due to low tropism of AAV2/7 for LC neurons. In this study we used a canine adenovirus type 2 (CAV2) vector with different volumes and viral particle numbers to achieve high and selective expression of hM3Dq, an excitatory Designer Receptor Exclusively Activated by Designer Drugs (DREADD), for chemogenetic modulation of LC neurons. METHODS: Adult male Sprague-Dawley rats were injected in the LC with different absolute numbers of CAV2-PRSx8-hM3Dq-mCherry physical particles (0.1E9, 1E9, 5E9,10E9, or 20E9 pp) using different volumes (LowV = 3 nl × 300 nl, MediumV = 3 × 600 nl, HighV = 3 × 1200 nl). Two weeks post-injection, double-labeling immunohistochemistry for dopamine ß hydroxylase (DBH) and mCherry was performed to determine hM3Dq expression and its specificity for LC neurons. The size of the transduced LC was compared to the contralateral LC to identify signs of toxicity. RESULTS: Administration of Medium volume (3 × 600 nl) and 1E9 particles resulted in high expression levels with 87.3 ± 9.8% of LC neurons expressing hM3Dq, but low specificity with 36.2 ± 17.3% of hM3Dq expression in non-LC neurons. The most diluted conditions (Low volume_0.1E pp and Medium Volume_0.1E pp) presented similar high transduction of LC neurons (70.9 ± 12.7 and 77.2 ± 9.8%) with lower aspecificity (5.5 ± 3.5 and 4.0 ± 1.9%, respectively). Signs of toxicity were observed in all undiluted conditions as evidenced by a decreased size of the transduced LC. CONCLUSION: This study identified optimal conditions (Low and Medium Volume with 0.1E9 particles of CAV2-PRSx8-hM3Dq-mCherry) for safe and specific transduction of LC neurons with excitatory DREADDs to study the role of the LC-NA system in health and disease.

5.
Front Neurosci ; 14: 162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210746

RESUMO

AIM: Selective chemogenetic modulation of locus coeruleus (LC) neurons would allow dedicated investigation of the role of the LC-NA pathway in brain excitability and disorders such as epilepsy. This study investigated the feasibility of an experimental set-up where chemogenetic modification of the brainstem locus coeruleus NA neurons is aimed at and followed by LC unit activity recording in response to clozapine. METHODS: The LC of male Sprague-Dawley rats was injected with 10 nl of adeno-associated viral vector AAV2/7-PRSx8-hM3Dq-mCherry (n = 19, DREADD group) or AAV2/7-PRSx8-eGFP (n = 13, Controls). Three weeks later, LC unit recordings were performed in anesthetized rats. We investigated whether clozapine, a drug known to bind to modified neurons expressing hM3Dq receptors, was able to increase the LC firing rate. Baseline unit activity was recorded followed by subsequent administration of 0.01 and 0.1 mg/kg of clozapine in all rats. hM3Dq-mcherry expression levels were investigated using immunofluorescence staining of brainstem slices at the end of the experiment. RESULTS: Unit recordings could be performed in 12 rats and in a total of 12 neurons (DREADDs: n = 7, controls: n = 5). Clozapine 0.01 mg/kg did not affect the mean firing rate of recorded LC-neurons; 0.1 mg/kg induced an increased firing rate, irrespective whether neurons were recorded from DREADD or control rats (p = 0.006). Co-labeling of LC neurons and mCherry-tag showed that 20.6 ± 2.3% LC neurons expressed the hM3Dq receptor. Aspecific expression of hM3Dq-mCherry was also observed in non-LC neurons (26.0 ± 4.1%). CONCLUSION: LC unit recording is feasible in an experimental set-up following manipulations for DREADD induction. A relatively low transduction efficiency of the used AAV was found. In view of this finding, the effect of injected clozapine on LC-NA could not be investigated as a reliable outcome parameter for activation of chemogenetically modified LC neurons. The use of AAV2/7, a vector previously applied successfully to target dopaminergic neurons in the substantia nigra, leads to insufficient chemogenetic modification of the LC compared to transduction with AAV2/9.

6.
Brain Stimul ; 13(5): 1198-1206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32454214

RESUMO

BACKGROUND: Recent experiments in rats have demonstrated significant effects of VNS on hippocampal excitability but were partially attributed to hypothermia, induced by the applied VNS parameters. OBJECTIVE: To allow meaningful preclinical research on the mechanisms of VNS and translation of rodent results to clinical VNS trials, we aimed to identify non-hypothermia inducing VNS parameters that significantly affect hippocampal excitability. METHODS: VNS was administered in cycles of 30 s including either 0.1, 0.16, 0.25, 0.5, 1.5, 3 or 7 s of VNS ON time (biphasic pulses, 250µs/phase, 1 mA, 30 Hz) and the effect of different VNS ON times on brain temperature was evaluated. VNS paradigms with and without hypothermia were compared for their effects on hippocampal neurophysiology in freely moving rats. RESULTS: Using VNS parameters with an ON time/OFF time of up to 0.5 s/30 s did not cause hypothermia, while clear hypothermia was detected with ON times of 1.5, 3 and 7 s/30 s. Relative to SHAM VNS, the normothermic 0.5 s VNS condition significantly decreased hippocampal EEG power and changed dentate gyrus evoked potentials with an increased field excitatory postsynaptic potential slope and a decreased population spike amplitude. CONCLUSION: VNS can be administered in freely moving rats without causing hypothermia, while profoundly affecting hippocampal neurophysiology suggestive of reduced excitability of hippocampal neurons despite increased synaptic transmission efficiency.


Assuntos
Temperatura Corporal/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Hipocampo/fisiologia , Estimulação do Nervo Vago/métodos , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia , Temperatura
7.
Int J Neural Syst ; 29(9): 1950008, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30961408

RESUMO

AIM. Vagus nerve stimulation (VNS) modulates hippocampal dentate gyrus (DG) electrophysiology and induces hypothermia in freely moving rats. This study evaluated whether hippocampal (CA1) electrophysiology is similarly modulated and to what extent this is associated with VNS-induced hypothermia. METHODS. Six freely moving rats received a first 4h session of rapid cycling VNS (7s on/18s off), while CA1 evoked potentials, EEG and core temperature were recorded. In a second 4h session, external heating was applied during the 3rd and 4thh of VNS counteracting VNS-induced hypothermia. RESULTS. VNS decreased the slope of the field excitatory postsynaptic potential (fEPSP), increased the population spike (PS) amplitude and latency, decreased theta (4-12Hz) and gamma (30-100Hz) band power and theta peak frequency. Normalizing body temperature during VNS through external heating abolished the effects completely for fEPSP slope, PS latency and gamma band power, partially for theta band power and theta peak frequency and inverted the effect on PS amplitude. CONCLUSIONS. Rapid cycle VNS modulates CA1 electrophysiology similarly to DG, suggesting a wide-spread VNS-induced effect on hippocampal electrophysiology. Normalizing core temperature elucidated that VNS-induced hypothermia directly influences several electrophysiological parameters but also masks a VNS-induced reduction in neuronal excitability.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciais Evocados/fisiologia , Hipotermia/fisiopatologia , Estimulação do Nervo Vago/métodos , Animais , Estimulação Elétrica , Eletroencefalografia , Calefação , Masculino , Ratos
8.
Neurotherapeutics ; 13(3): 592-602, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27102987

RESUMO

Although vagus nerve stimulation (VNS) is widely used, therapeutic mechanisms and optimal stimulation parameters remain elusive. In the present study, we investigated the effect of VNS on hippocampal field activity and compared the efficiency of different VNS paradigms. Hippocampal electroencephalography (EEG) and perforant path dentate field-evoked potentials were acquired before and during VNS in freely moving rats, using 2 VNS duty cycles: a rapid cycle (7 s on, 18 s off) and standard cycle (30 s on, 300 s off) and various output currents. VNS modulated the evoked potentials, reduced total power of the hippocampal EEG, and slowed the theta rhythm. In the hippocampal EEG, theta (4-8 Hz) and high gamma (75-150 Hz) activity displayed strong phase amplitude coupling that was reduced by VNS. Rapid-cycle VNS had a greater effect than standard-cycle VNS on all outcome measures. Using rapid cycle VNS, a maximal effect on EEG parameters was found at 300 µA, beyond which effects saturated. The findings suggest that rapid-cycle VNS produces a more robust outcome than standard cycle VNS and support already existing preclinical evidence that relatively low output currents are sufficient to produce changes in brain physiology and thus likely also therapeutic efficacy.


Assuntos
Ondas Encefálicas , Hipocampo/fisiologia , Estimulação do Nervo Vago/métodos , Animais , Giro Denteado/fisiologia , Eletroencefalografia , Potenciais Evocados , Potenciais Pós-Sinápticos Excitadores , Masculino , Via Perfurante/fisiologia , Ratos , Ratos Sprague-Dawley , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA